Molecular characterization of the S-adenosyl-L-methionine:3′-hydroxy-N-methylcoclaurine 4′-O-methyltransferase involved in isoquinoline alkaloid biosynthesis in Coptis japonica

被引:151
作者
Morishige, T
Tsujita, T
Yamada, Y
Sato, F [1 ]
机构
[1] Kyoto Univ, Grad Sch Agr, Div Appl Life Sci, Kyoto 6068502, Japan
[2] Kyoto Univ, Grad Sch Biostudies, Div Integrated Life Sci, Kyoto 6068502, Japan
关键词
D O I
10.1074/jbc.M002439200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
S-Adenosyl-L-methionine:3' -hydroxy-N-methylcoclaurine 4'-O-methyltransferase (4'-OMT) catalyzes the conversion of 3'-hydroxy-N-methylcoclaurine to reticuline, an important intermediate in synthesizing isoquinoline alkaloids. In an earlier step in the biosynthetic pathway to reticuline, another O-methyltransferase, S-adenosyl-L-methionine:norcoclaurine 6-O-methyltransferase (6-OMT), catalyzes methylation of the 6-hydroxyl group of norcoclaurine, We isolated two kinds of cDNA clones that correspond to the internal amino acid sequences of a 6-OMT/4'-OMT preparation from cultured Coptis japonica cells. Heterologously expressed proteins had 6-OMT or 4'-OMT activities, indicative that each cDNA encodes a different enzyme. 4'-OMT was purified using recombinant protein, and its enzymological properties were characterized. It had enzymological characteristics similar to those of 6-OMT; the active enzyme was the dimer of the subunit, no divalent cations were required for activity, and there was inhibition by Fe2+ Cu2+, Co2+, Zn2+, or Ni2+, but none by the SH reagent. 4'-OMT clearly had different substrate specificity. It methylated (R,S)-6-O-methylnorlaudanosoline, as well as (R,S)-laudanosoline and (R,S)-norlaudanosoline. Laudanosoline, an N-methylated substrate, was a much better substrate for 4'-OMT than norlaudanosoline. 6-OMT methylated norlaudanosoline and laudanosoline equally. Further characterization of the substrate saturation and product inhibition kinetics indicated that 4'-OMT follows an ordered Bi Bi mechanism, whereas 6-OMT follows a Ping-Pong Bi Bi mechanism. The molecular evolution of these two related O-methyltransferases is discussed.
引用
收藏
页码:23398 / 23405
页数:8
相关论文
共 23 条