The AMP-activated protein kinase pathway - new players upstream and downstream

被引:943
作者
Hardie, DG [1 ]
机构
[1] Univ Dundee, Div Mol Physiol, Wellcome Trust Bioctr, Dundee DD1 5EH, Scotland
关键词
AMP-activated protein kinase; LKB1; TSC2;
D O I
10.1242/jcs.01540
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The AMP-activated protein kinase (AMPK) cascade is a sensor of cellular energy status. Whenever the cellular ATP:ADP ratio falls, owing to a stress that inhibits ATP production or increases ATP consumption, this is amplified by adenylate kinase into a much larger increase in the AMP:ATP ratio. AMP activates the system by binding to two tandem domains on the gamma subunits of AMPK, and this is antagonized by high concentrations of ATP. AMP binding causes activation by a sensitive mechanism involving phosphorylation of AMPK by the tumour suppressor LKB1. Once activated, AMPK switches on catabolic pathways that generate ATP while switching off ATP-consuming processes. As well as acting at the level of the individual cell, the system also regulates food intake and energy expenditure at the whole body level, in particular by mediating the effects of hormones and cytokines such as leptin, adiponectin and ghrelin. A particularly interesting downstream target recently identified is TSC2 (tuberin). The LKB1-->AMPK-->TSC2 pathway negatively regulates the target of rapamycin (TOR), and this appears to be responsible for limiting protein synthesis and cell growth, and protecting against apoptosis, during cellular stresses such as glucose starvation.
引用
收藏
页码:5479 / 5487
页数:9
相关论文
共 93 条
  • [1] The Giardia lamblia genome
    Adam, RD
    [J]. INTERNATIONAL JOURNAL FOR PARASITOLOGY, 2000, 30 (04) : 475 - 484
  • [2] Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway
    Almeida, A
    Moncada, S
    Bolaños, JP
    [J]. NATURE CELL BIOLOGY, 2004, 6 (01) : 45 - U9
  • [3] AMP-activated protein kinase plays a role in the control of food intake
    Andersson, U
    Filipsson, K
    Abbott, CR
    Woods, A
    Smith, K
    Bloom, SR
    Carling, D
    Small, CJ
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (13) : 12005 - 12008
  • [4] Complete polarization of single intestinal epithelial cells upon activation of LKB1 by STRAD
    Baas, AF
    Kuipers, J
    van der Wel, NN
    Batlle, E
    Koerten, HK
    Peters, PJ
    Clevers, HC
    [J]. CELL, 2004, 116 (03) : 457 - 466
  • [5] Activation of the tumour suppressor kinase LKB1 by the STE20-like pseudokinase STRAD
    Baas, AF
    Boudeau, J
    Sapkota, GP
    Smit, L
    Medema, R
    Morrice, NA
    Alessi, DR
    Clevers, HC
    [J]. EMBO JOURNAL, 2003, 22 (12) : 3062 - 3072
  • [6] Loss of the Lkb1 tumour suppressor provokes intestinal polyposis but resistance to transformation
    Bardeesy, N
    Sinha, M
    Hezel, AF
    Signoretti, S
    Hathaway, NA
    Sharpless, NE
    Loda, M
    Carrasco, DR
    DePinho, RA
    [J]. NATURE, 2002, 419 (6903) : 162 - 167
  • [8] Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis
    Bergeron, R
    Ren, JM
    Cadman, KS
    Moore, IK
    Perret, P
    Pypaert, M
    Young, LH
    Semenkovich, CF
    Shulman, GI
    [J]. AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2001, 281 (06): : E1340 - E1346
  • [9] AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling.
    Bolster, DR
    Crozier, SJ
    Kimball, SR
    Jefferson, LS
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (27) : 23977 - 23980
  • [10] MO25α/β interact with STRADα/β enhancing their ability to bind, activate and localize LKB1 in the cytoplasm
    Boudeau, J
    Baas, AF
    Deak, M
    Morrice, NA
    Kieloch, A
    Schutkowski, M
    Prescott, AR
    Clevers, HC
    Alessi, DR
    [J]. EMBO JOURNAL, 2003, 22 (19) : 5102 - 5114