Universal algorithm for optimal estimation of quantum states from finite ensembles via realizable generalized measurement

被引:234
作者
Derka, R
Buzek, V
Ekert, AK
机构
[1] Univ Oxford, Dept Phys, Oxford OX1 3PU, England
[2] Slovak Acad Sci, Inst Phys, Bratislava 84228, Slovakia
[3] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Opt Sect, London SW7 2BZ, England
关键词
D O I
10.1103/PhysRevLett.80.1571
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a universal algorithm for the optimal quantum state estimation of an arbitrary finite dimensional system. The algorithm specifies a physically realizable (i.e., finite) positive operator-valued measurement on a finite number of identically prepared systems. We illustrate the general formalism by applying it to different scenarios of the state estimation of N independent and identically prepared two-level systems (qubits).
引用
收藏
页码:1571 / 1575
页数:5
相关论文
共 9 条
[1]  
[Anonymous], 1993, Quantum Theory: Concepts and Methods, Fundamental Theories of Physics
[2]  
Barut A. O., 1986, THEORY GROUP REPRESE
[3]  
DERKA R, UNPUB OPTIMAL ESTIMA
[4]  
Helstrom C., 1976, QUANTUM DETECTION ES
[5]  
Holevo A. S., 1982, PROBABILISTIC STAT A, P163
[6]   OPTIMAL EXTRACTION OF INFORMATION FROM FINITE QUANTUM ENSEMBLES [J].
MASSAR, S ;
POPESCU, S .
PHYSICAL REVIEW LETTERS, 1995, 74 (08) :1259-1263
[7]  
Neumark MA, 1943, CR ACAD SCI URSS, V41, P359
[8]   UNITARY PHASE OPERATOR IN QUANTUM-MECHANICS [J].
PEGG, DT ;
BARNETT, SM .
EUROPHYSICS LETTERS, 1988, 6 (06) :483-487
[9]  
Zare R. N., 1988, ANGULAR MOMENTUM UND