Transmission regimes of periodic nonlinear optical structures

被引:24
作者
Pelinovsky, DE
Brzozowski, L
Sargent, EH
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 3G3, Canada
[2] Univ Toronto, Dept Elect & Comp Engn, Toronto, ON M5S 1A4, Canada
来源
PHYSICAL REVIEW E | 2000年 / 62卷 / 04期
关键词
D O I
10.1103/PhysRevE.62.R4536
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the input-output transmission regimes of optical structures with periodic nonlinear index. By deriving an analytical model from the Maxwell equations, we analyze the physical processes responsible for multistable and stable behavior. The threshold condition that separates multistable and stable transmission regimes is found exactly within the underlying model. We also derive analytical expressions for the limiting transmitted intensity in the stable regime and for the transmittance in the multistable regime in terms of optical wavelength and material parameters.
引用
收藏
页码:R4536 / R4539
页数:4
相关论文
共 28 条
[1]  
[Anonymous], [No title captured]
[2]   Optical signal processing using nonlinear distributed feedback structures [J].
Brzozowski, L ;
Sargent, EH .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2000, 36 (05) :550-555
[3]   Nonlinear distributed-feedback structures as passive optical limiters [J].
Brzozowski, L ;
Sargent, EH .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2000, 17 (08) :1360-1365
[4]   Cavityless oscillation through backward quasi-phase-matched second-harmonic generation [J].
Conti, C ;
Assanto, G ;
Trillo, S .
OPTICS LETTERS, 1999, 24 (16) :1139-1141
[5]   Nonlinear dynamics of a backward quasi-phase-matched second-harmonic generator [J].
DAlessandro, G ;
Russell, PS ;
Wheeler, AA .
PHYSICAL REVIEW A, 1997, 55 (04) :3211-3218
[6]   DISPERSIVE OPTICAL BISTABILITY IN STRATIFIED STRUCTURES [J].
DANCKAERT, J ;
FOBELETS, K ;
VERETENNICOFF, I ;
VITRANT, G ;
REINISCH, R .
PHYSICAL REVIEW B, 1991, 44 (15) :8214-8225
[7]  
Gibbs H. M., 1985, OPTICAL BISTABILITY
[8]   OPTICAL MULTISTABILITY IN A NONLINEAR FIBONACCI MULTILAYER [J].
GUPTA, SD ;
RAY, DS .
PHYSICAL REVIEW B, 1988, 38 (05) :3628-3631
[9]   COMPETITIVE INSTABILITY IN NONLINEAR FABRY-PEROT ETALONS [J].
HALLEY, JM ;
MIDWINTER, JE .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1990, 26 (02) :348-360
[10]   Theory of modulational instability in Bragg gratings with quadratic nonlinearity [J].
He, H ;
Arraf, A ;
de Sterke, CM ;
Drummond, PD ;
Malomed, BA .
PHYSICAL REVIEW E, 1999, 59 (05) :6064-6078