On spectral estimates of fresh leaf biochemistry

被引:65
作者
Fourty, T [1 ]
Baret, F [1 ]
机构
[1] INRA, F-89914 Avignon 9, France
关键词
D O I
10.1080/014311698215441
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Protein, lignin, cellulose, hemicellulose, sugar, and starch contents per unit leaf area of fresh leaves were related to the corresponding reflectance and transmittance spectra using multiple linear regressions. When the regressions are evaluated over the data set used for calibrating, they show relatively good performances. However, applying these relations to an independent data set led to very poor performances. It was concluded that the detailed canopy biochemistry was not accessible in a robust way from fresh leaf optical properties measurements over a large range of leaf types. The only variables that can be accurately derived from leaf reflectance or transmittance measurements are water and dry matter (i.e., the specific leaf weight) contents per unit leaf area. Transforming reflectance (rho) or transmittance (tau) values into the corresponding absorbance (log(1/rho) or log(1/tau)) values improves the accuracy of the estimates. Using transmittance rather than reflectance provides better retrieval performances. We investigated the sensitivity of the relationships to the radiometric noise associated to reflectance or transmittance measurements. It appears, particularly for water, that the estimates are quite sensitive to the radiometric resolution of the instrument used. We propose a technique that minimizes the sensitivity of the estimates to the radiometric noise and improves their robustness. It consists of enlarging the calibration data set by adding random instrumental noise similar to that observed over the test data set. Results show that, this way, three wavebands (1910, 1380, and 900 nm for water; 2310, 2160, and 1870 nm for dry matter) allow good estimates of water (RMSE=0.0011 g cm(-2)) and dry matter contents (RMSE=0.0008 g cm(-2)).
引用
收藏
页码:1283 / 1297
页数:15
相关论文
共 33 条
[1]  
[Anonymous], 1988, ANAL APPL SPECTROSCO
[2]  
[Anonymous], FEED SCI TECHNOLOGY
[3]  
*AOAC, 1970, OFF METH AN
[4]   USE OF SPECTRAL ANALOGY TO EVALUATE CANOPY REFLECTANCE SENSITIVITY TO LEAF OPTICAL-PROPERTIES [J].
BARET, F ;
VANDERBILT, VC ;
STEVEN, MD ;
JACQUEMOUD, S .
REMOTE SENSING OF ENVIRONMENT, 1994, 48 (02) :253-260
[5]  
BOREL CC, 1994, IEEE T GEOSCIENCES R, V2, P996
[6]   PREDICTION OF LEAF CHEMISTRY BY THE USE OF VISIBLE AND NEAR-INFRARED REFLECTANCE SPECTROSCOPY [J].
CARD, DH ;
PETERSON, DL ;
MATSON, PA ;
ABER, JD .
REMOTE SENSING OF ENVIRONMENT, 1988, 26 (02) :123-147
[7]   REFLECTANCE SPECTROSCOPY OF FRESH WHOLE LEAVES FOR THE ESTIMATION OF CHEMICAL CONCENTRATION [J].
CURRAN, PJ ;
DUNGAN, JL ;
MACLER, BA ;
PLUMMER, SE ;
PETERSON, DL .
REMOTE SENSING OF ENVIRONMENT, 1992, 39 (02) :153-166
[8]   REMOTE-SENSING OF FOLIAR CHEMISTRY [J].
CURRAN, PJ .
REMOTE SENSING OF ENVIRONMENT, 1989, 30 (03) :271-278
[9]  
DEVRIES FWT, 1974, J THEOR BIOL, V45, P339, DOI DOI 10.1016/0022-5193(74)90119-2
[10]  
EWERTS L, 1985, 3 DIR AV RECT JOCE 2