共 59 条
Insulin receptor substrate-2 proteasomal degradation mediated by a mammalian target of rapamycin (mTOR)-induced negative feedback down-regulates protein kinase B-mediated signaling pathway in β-cells
被引:123
作者:
Briaud, I
Dickson, LM
Lingohr, MK
McCuaig, JF
Lawrence, JC
Rhodes, CJ
机构:
[1] Pacific NW Res Inst, Seattle, WA 98122 USA
[2] Univ Washington, Dept Pharmacol, Seattle, WA 98122 USA
[3] Univ Virginia, Sch Med, Dept Med & Pharmacol, Charlottesville, VA 22908 USA
关键词:
D O I:
10.1074/jbc.M412179200
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Regulation of insulin receptor substrate (IRS)-2 expression is critical to beta-cell survival, but the mechanisms that control this are complex and undefined. Here in pancreatic beta-cells (INS-1), chronic exposure (> 8 h) to 15 mM glucose and/or 5 nM IGF-1, increased Ser/Thr phosphorylation of IRS-2, which correlated with decreased IRS-2 levels. This glucose/IGF-1-induced decrease in IRS-2 levels was prevented by the proteasomal inhibitor, lactacystin. In addition, the glucose/IGF-1-induced increase in Ser/Thr phosphorylation of IRS-2 and the subsequent decrease in INS-1 cell IRS-2 protein levels was thwarted by the mammalian target of rapamycin( mTOR) inhibitor, rapamycin. Moreover, adenoviral-mediated expression of constitutively active mTOR (mTORDelta) further increased glucose/IGF-1-induced Ser/Thr phosphorylation of IRS-2 and decreased IRS-2 protein levels, whereas adenoviral-mediated expression of "kinase-dead" mTOR (mTOR-KD) conversely reduced Ser/Thr phosphorylation of IRS-2 and maintained IRS-2 protein levels. In adenoviral-infected beta-cells expressing mTORDelta, the decrease in IRS-2 protein levels was also prevented by rapamycin or lactacystin, further indicating a proteasomal mediated degradation of IRS-2 mediated via mTOR-induced Ser/Thr phosphorylation of IRS-2. Finally, we found that chronic activation of mTOR leading to decreased levels of IRS-2 in INS-1 cells led to a significant decrease in PKB activation and consequently increased beta-cell apoptosis. Thus, chronic activation of mTOR by glucose (and/or IGF-1) in beta-cells leads to increased Ser/Thr phosphorylation of IRS-2 that targets it for proteasomal degradation, resulting in decreased IRS-2 expression and increased beta-cell apoptosis. This may be a contributing mechanism as to how beta-cell mass is decreased by chronic hyperglycemia in the pathogenesis of type-2 diabetes.
引用
收藏
页码:2282 / 2293
页数:12
相关论文