Fluctuation and relaxation properties of pulled fronts: A scenario for nonstandard Kardar-Parisi-Zhang scaling

被引:33
作者
Tripathy, G [1 ]
van Saarloos, W [1 ]
机构
[1] Leiden Univ, Inst Lorentz, NL-2300 RA Leiden, Netherlands
关键词
D O I
10.1103/PhysRevLett.85.3556
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We argue that while fluctuating fronts propagating into an unstable state should be in the standard Kardar-Parisi-Zhang (KPZ) universality class when they are pushed, they should not when they are pulled: The lit velocity relaxation of deterministic pulled fronts makes it unlikely that the KPZ equation is their proper effective long-wavelength low-frequency theory. Simulations in 2D confirm the proposed scenario, and yield exponents beta approximate to 0.29 +/- 0.01, zeta approximate to 0.40 +/- 0.02 for fluctuating pulled fronts, instead of the (1 + 1)D KPZ values beta = 1/3, zeta = 1/2. Our value of beta is consistent with an earlier result of Riordan et al., and with a recent conjecture that the exponents are the (2 + 1)D KPZ values.
引用
收藏
页码:3556 / 3559
页数:4
相关论文
共 19 条
[1]  
Barabasi A-Ls, 1995, FRACTAL CONCEPTS SUR, DOI [10.1017/CBO9780511599798, DOI 10.1017/CBO9780511599798]
[2]   PATTERN PROPAGATION IN NONLINEAR DISSIPATIVE SYSTEMS [J].
BENJACOB, E ;
BRAND, H ;
DEE, G ;
KRAMER, L ;
LANGER, JS .
PHYSICA D-NONLINEAR PHENOMENA, 1985, 14 (03) :348-364
[3]   Shift in the velocity of a front due to a cutoff [J].
Brunet, E ;
Derrida, B .
PHYSICAL REVIEW E, 1997, 56 (03) :2597-2604
[4]   Breakdown of the standard perturbation theory and moving boundary approximation for "pulled" fronts [J].
Ebert, U ;
van Saarloos, W .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 337 (1-2) :139-156
[5]   Front propagation into unstable states: universal algebraic convergence towards uniformly translating pulled fronts [J].
Ebert, U ;
van Saarloos, W .
PHYSICA D-NONLINEAR PHENOMENA, 2000, 146 (1-4) :1-99
[6]   Universal algebraic relaxation of fronts propagating into an unstable state and implications for moving boundary approximations [J].
Ebert, U ;
van Saarloos, W .
PHYSICAL REVIEW LETTERS, 1998, 80 (08) :1650-1653
[7]   WIDTH DISTRIBUTION FOR RANDOM-WALK INTERFACES [J].
FOLTIN, G ;
OERDING, K ;
RACZ, Z ;
WORKMAN, RL ;
ZIA, RKP .
PHYSICAL REVIEW E, 1994, 50 (02) :R639-R642
[8]   KINETIC ROUGHENING PHENOMENA, STOCHASTIC GROWTH DIRECTED POLYMERS AND ALL THAT - ASPECTS OF MULTIDISCIPLINARY STATISTICAL-MECHANICS [J].
HALPINHEALY, T ;
ZHANG, YC .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1995, 254 (4-6) :215-415
[9]   DYNAMIC SCALING OF GROWING INTERFACES [J].
KARDAR, M ;
PARISI, G ;
ZHANG, YC .
PHYSICAL REVIEW LETTERS, 1986, 56 (09) :889-892
[10]   Quantitative phase-field modeling of dendritic growth in two and three dimensions [J].
Karma, A ;
Rappel, WJ .
PHYSICAL REVIEW E, 1998, 57 (04) :4323-4349