Background: Cytokinesis occurs just as chromosomes complete segregation and reform nuclei. It has been proposed that cyclin/Cdk kinase inhibits cytokinesis until exit from mitosis; however, the timer of cytokinesis has not been experimentally defined. Whereas expression of a stable version of Drosophila cyclin B blocks cytokinesis along with numerous events of mitotic exit, stable cyclin B3 allows cytokinesis even though it blocks late events of mitotic exit [1]. We examined the interface between mitotic cyclin destruction and the timing of cytokinesis. Results: In embryonic mitosis 14, the cytokinesis furrow appeared 60 s after the metaphase/anaphase transition and closed 90 s later during telophase. In cyclin B or cyclin B3 mutant cells, the cytokinesis furrow appeared at an earlier stage of mitosis. Expression of stable cyclin B3 delayed and prolonged furrow invagination; nonetheless, cytokinesis completed during the extended mitosis. Reduced function of Pebble, a Rho GEF required for cytokinesis, also delayed and slowed furrow invagination, but incomplete furrows were aborted at the time of mitotic exit. In functional and genetic tests, cyclin B and cyclin B3 inhibited Pebble contributions to cytokinesis. Conclusions: Temporal coordination of mitotic events involves inhibition of cytokinesis by cyclin B and cyclin B3 and punctual relief of the inhibition by destruction of these cyclins. Both cyclins inhibit Pebble-dependent activation of cytokinesis, whereas cyclin B can inhibit cytokinesis by additional modes. Stable cyclin B3 also blocks the later return to interphase that otherwise appears to impose a deadline for the completion of cytokinesis.