Internal transport barriers in Alcator C-Mod

被引:11
作者
Fiore, C. L. [1 ]
Ernst, D. R. [1 ]
Rice, J. E. [1 ]
Zhurovich, K. [1 ]
Basse, N. [1 ]
Bonoli, P. T. [1 ]
Greenwald, M. J. [1 ]
Marmar, E. S. [1 ]
Wukitch, S. J. [1 ]
机构
[1] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA
关键词
internal transport barriers; tokamaks; Alcator C-Mod;
D O I
10.13182/FST07-A1424
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Internal transport barriers (ITBs) marked by steep density and pressure profiles and reduction of core transport are obtained in Alcator C-Mod. Transient single barriers are observed at the back-transition from H- to L-mode and also when pellet injection is accompanied by ion cyclotron resonance frequency (ICRF) power. Double barriers are induced with injection of off-axis ICRF power deposition. These also arise spontaneously in ohmic H-mode plasmas when the H-mode lasts for several energy confinement times. C-Mod provides a unique platform for studying such discharges: The ions and electrons are tightly coupled by collisions with T-i/T-e = 1, and the plasma has no internal particle or momentum sources. ITB plasmas with average pressure greater than 1 atm have been obtained. To form an ITB, particle and thermal flux are reduced in the barrier region, allowing the neoclassical pinch to peak the density while maintaining the central temperature. Gyrokinetic simulation suggests that long-wavelength drift wave turbulence in the core is marginally stable at the ITB onset, but steepening of the density profile destabilizes trapped electron modes (TEMs) inside the barrier. The TEM ultimately drives sufficient outgoing particle flux to balance the inward pinch and halt further density rise, which allows control of particle and impurity peaking.
引用
收藏
页码:303 / 316
页数:14
相关论文
共 42 条
[1]  
[Anonymous], 1989, NUCL FUSION, DOI DOI 10.1088/0029-5515/29/11/010
[2]   Characterization of core and edge turbulence in L- and enhanced Dα H-mode Alcator C-Mod plasmas -: art. no. 052512 [J].
Basse, NP ;
Edlund, EM ;
Ernst, DR ;
Fiore, CL ;
Greenwald, MJ ;
Hubbard, AE ;
Hughes, JW ;
Irby, JH ;
Lin, L ;
Lin, Y ;
Marmar, ES ;
Mossessian, DA ;
Porkolab, M ;
Rice, JE ;
Snipes, JA ;
Stillerman, JA ;
Terry, JL ;
Wolfe, SM ;
Wukitch, SJ ;
Zhurovich, K ;
Kramer, GJ ;
Mikkelsen, DR .
PHYSICS OF PLASMAS, 2005, 12 (05) :1-14
[3]  
BONOLI PT, 2001, B AM PHYS SOC, V46, P54
[4]   Numerical simulation of ion cyclotron waves in tokamak plasmas [J].
Brambilla, M .
PLASMA PHYSICS AND CONTROLLED FUSION, 1999, 41 (01) :1-34
[5]   EFFECT OF FINITE ASPECT RATIO ON THE NEOCLASSICAL ION THERMAL-CONDUCTIVITY IN THE BANANA REGIME [J].
CHANG, CS ;
HINTON, FL .
PHYSICS OF FLUIDS, 1982, 25 (09) :1493-1494
[6]   A review of internal transport barrier physics for steady-state operation of tokamaks [J].
Connor, JW ;
Fukuda, T ;
Garbet, X ;
Gormezano, C ;
Mukhovatov, V ;
Wakatani, M .
NUCLEAR FUSION, 2004, 44 (04) :R1-R49
[7]   Electron temperature gradient turbulence [J].
Dorland, W ;
Jenko, F ;
Kotschenreuther, M ;
Rogers, BN .
PHYSICAL REVIEW LETTERS, 2000, 85 (26) :5579-5582
[8]   Role of trapped electron mode turbulence in internal transport barrier control in the Alcator C-Mod Tokamak [J].
Ernst, DR ;
Bonoli, PT ;
Catto, PJ ;
Dorland, W ;
Fiore, CL ;
Granetz, RS ;
Greenwald, M ;
Hubbard, AE ;
Porkolab, M ;
Redi, MH ;
Rice, JE ;
Zhurovich, K .
PHYSICS OF PLASMAS, 2004, 11 (05) :2637-2648
[9]  
ERNST DR, 2004, P 20 IAEA FUS EN C V
[10]   Internal transport barrier production and control in Alcator C-Mod [J].
Fiore, CL ;
Bonoli, PT ;
Ernst, DR ;
Greenwald, MJ ;
Marmar, ES ;
Redi, MH ;
Rice, JE ;
Wukitch, SJ ;
Zhurovich, K .
PLASMA PHYSICS AND CONTROLLED FUSION, 2004, 46 :B281-B291