The query complexity of order-finding

被引:8
作者
Cleve, R [1 ]
机构
[1] Univ Calgary, Dept Comp Sci, Calgary, AB T2N 1N4, Canada
来源
15TH ANNUAL IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY, PROCEEDINGS | 2000年
关键词
D O I
10.1109/CCC.2000.856735
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the problem here pi is an unknown permutation on {0, 1,...,2(n) - 1}, y(0) is an element of {0, 1,..., 2(n) - 1), and the goal is to determine the minimum r > 0 such that pi(r)(y(0)) = y(0). Information about pi is available only via queries that yield pi(x)(y) from any x is an element of {0, 1,...,2(n) - 1} and y is an element of {0, 1,...,2(n) - 1) (where m is polynomial in n). The resource under consideration is the number of these queries (hence our model of computation is the decision tree). We show that the number of queries necessary to solve the problem in the classical probabilistic bounded-error model is exponential in n. This contrasts sharply with the quantum bounded-error model, where a constant number of queries suffices.
引用
收藏
页码:54 / 59
页数:6
相关论文
共 12 条
[1]  
Bach E., 1996, ALGORITHMIC NUMBER T
[2]   The difference between consecutive primes [J].
Baker, RC ;
Harman, G .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1996, 72 :261-280
[3]   Quantum complexity theory [J].
Bernstein, E ;
Vazirani, U .
SIAM JOURNAL ON COMPUTING, 1997, 26 (05) :1411-1473
[4]  
Cleve R, 1998, P ROY SOC A-MATH PHY, V454, P339, DOI 10.1002/(SICI)1099-0526(199809/10)4:1<33::AID-CPLX10>3.0.CO
[5]  
2-U
[6]  
Grover L. K., 1996, Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing. STOC'96, P212, DOI [10.1145/237814.237866, DOI 10.1145/237814.237866]
[7]   PRIMES IN SHORT INTERVALS [J].
IWANIEC, H ;
JUTILA, M .
ARKIV FOR MATEMATIK, 1979, 17 (01) :167-176
[8]  
KITAEV AY, 1996, QUANTPH9511026
[9]   ZEROS OF L-FUNCTIONS [J].
MONTGOMERY, HL .
INVENTIONES MATHEMATICAE, 1969, 8 (04) :346-+
[10]  
Shor PW, 1997, SIAM J COMPUT, V26, P1484, DOI [10.1137/S0097539795293172, 10.1137/S0036144598347011]