Interactive visualization of uncertain spatial and spatio-temporal data under different scenarios: an air quality example

被引:43
作者
Pebesma, Edzer J. [1 ]
de Jong, Kor
Briggs, David
机构
[1] Univ Utrecht, Fac Geosci, NL-3508 TC Utrecht, Netherlands
[2] Univ London Imperial Coll Sci & Technol, London, England
关键词
dynamic graphics; maps; probability density function; cumulative density function; environmental modelling; FRAMEWORK;
D O I
10.1080/13658810601064009
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces a method for visually exploring spatio-temporal data or predictions that come as probability density functions, e.g. output of statistical models or Monte Carlo simulations, under different scenarios. For a given moment in time, we can explore the probability dimension by looking at maps with cumulative or exceedance probability while varying the attribute level that is exceeded, or by looking at maps with quantiles while varying the probability value. Scenario comparison is done by arranging the maps in a lattice with each panel reacting identically to legend modification, zooming, panning, or map querying. The method is illustrated by comparing different modelling scenarios for yearly NO2 levels in 2001 across the European Union.
引用
收藏
页码:515 / 527
页数:13
相关论文
共 16 条
[1]  
Aerts C.J. H. J., 2003, Cartography and Geographic Information Science, V30, P249, DOI DOI 10.1559/152304003100011180
[2]  
[Anonymous], 1988, Dynamic Graphics for Statistics
[3]  
Chiles J.P., 1999, Geostatistics: modeling spatial uncertainty, V2nd
[4]  
Cleveland W.S., 1993, VISUALIZING DATA
[5]   Visualizing spatial data uncertainty using animation [J].
Ehlschlaeger, CR ;
Shortridge, AM ;
Goodchild, MF .
COMPUTERS & GEOSCIENCES, 1997, 23 (04) :387-395
[6]  
ESRI, 2004, GETT START ARCGIS
[7]   Dynamic display of spatial data-reliability: Does it benefit the map user? [J].
Evans, BJ .
COMPUTERS & GEOSCIENCES, 1997, 23 (04) :409-422
[8]  
Goovaerts P., 1997, GEOSTATISTICS NATURA, V483
[9]   A generic framework for spatial prediction of soil variables based on regression-kriging [J].
Hengl, T ;
Heuvelink, GBM ;
Stein, A .
GEODERMA, 2004, 120 (1-2) :75-93
[10]  
Hengl T., 2003, P 7 INT C GEOCOMPUTA, P8