Scavenging of peroxynitrite by a phenolic/peroxidase system prevents oxidative damage to DNA

被引:60
作者
Grace, SC [1 ]
Salgo, MG [1 ]
Pryor, WA [1 ]
机构
[1] Louisiana State Univ, Inst Biodynam, Baton Rouge, LA 70803 USA
关键词
antioxidant; chlorogenic acid; DNA damage; horseradish peroxidase; inflammation; myeloperoxidase; peroxynitrite scavenging; polyphenol;
D O I
10.1016/S0014-5793(98)00298-1
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We examined the ability of horseradish peroxidase (HRP), an analog of human myeloperoxidase, to protect DNA against oxidative damage caused by peroxynitrite in the presence of chlorogenic acid (CGA), a naturally occurring polyphenol. Chlorogenic acid inhibits the formation of single strand breaks in supercoiled pBR322 DNA by acting as a scavenger of peroxynitrite. Horseradish peroxidase markedly enhances the extent of DNA protection by catalyzing the decomposition of peroxynitrite in the presence of CGA. Horseradish peroxidase alone does not inhibit peroxynitrite-induced DNA strand breaks, indicating that CGA is required as an electron donor to regenerate the active enzyme. The apparent second order rate constant for the HRP-mediated oxidation of CGA in the presence of peroxynitrite at pH 6.9 is 3.4 x 10(7) M-1 s(-1). This high rate suggests that CGA and other dietary polyphenols might efficiently scavenge peroxynitrite in peroxidase-containing systems in vivo. (C) 1998 Federation of European Biochemical Societies.
引用
收藏
页码:24 / 28
页数:5
相关论文
共 52 条
[1]  
[Anonymous], [No title captured]
[2]   KINETICS OF SUPEROXIDE DISMUTASE-CATALYZED AND IRON-CATALYZED NITRATION OF PHENOLICS BY PEROXYNITRITE [J].
BECKMAN, JS ;
ISCHIROPOULOS, H ;
ZHU, L ;
VANDERWOERD, M ;
SMITH, C ;
CHEN, J ;
HARRISON, J ;
MARTIN, JC ;
TSAI, M .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1992, 298 (02) :438-445
[3]  
BECKMAN JS, 1990, P NATL ACAD SCI USA, V87, P160
[4]  
BORS W, 1990, METHOD ENZYMOL, V186, P343
[5]   KINETICS OF NITRIC-OXIDE AND HYDROGEN-PEROXIDE PRODUCTION AND FORMATION OF PEROXYNITRITE DURING THE RESPIRATORY BURST OF HUMAN NEUTROPHILS [J].
CARRERAS, MC ;
PARGAMENT, GA ;
CATZ, SD ;
PODEROSO, JJ ;
BOVERIS, A .
FEBS LETTERS, 1994, 341 (01) :65-68
[6]   ANTIOXIDANT POTENTIAL OF INTERMEDIATES IN PHENYLPROPANOID METABOLISM IN HIGHER-PLANTS [J].
CASTELLUCCIO, C ;
PAGANGA, G ;
MELIKIAN, N ;
BOLWELL, GP ;
PRIDHAM, J ;
SAMPSON, J ;
RICEEVANS, C .
FEBS LETTERS, 1995, 368 (01) :188-192
[7]   Oxidation and nitration of catecholamines by nitrogen oxides derived from nitric oxide [J].
Daveu, C ;
Servy, C ;
Dendane, M ;
Marin, P ;
Ducrocq, C .
NITRIC OXIDE-BIOLOGY AND CHEMISTRY, 1997, 1 (03) :234-243
[8]   Peroxynitrite mediated oxidation of purine bases of nucleosides and isolated DNA [J].
Douki, T ;
Cadet, J .
FREE RADICAL RESEARCH, 1996, 24 (05) :369-380
[9]   Formation of nitric oxide derived inflammatory oxidants by myeloperoxidase in neutrophils [J].
Eiserich, JP ;
Hristova, M ;
Cross, CE ;
Jones, AD ;
Freeman, BA ;
Halliwell, B ;
van der Vliet, A .
NATURE, 1998, 391 (6665) :393-397
[10]  
FLORIS R, 1993, EUR J BIOCHEM, V215, P767, DOI 10.1111/j.1432-1033.1993.tb18091.x