Simulation strategies and signatures of chaos in classical nonlinear response

被引:31
作者
Dellago, C
Mukamel, S
机构
[1] Univ Rochester, Dept Chem, Rochester, NY 14627 USA
[2] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA
来源
PHYSICAL REVIEW E | 2003年 / 67卷 / 03期
关键词
LIQUID;
D O I
10.1103/PhysRevE.67.035205
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Algorithms are presented for overcoming the computational challenge of nonlinear response functions which describe the response of a classical system to a sequence of n pulses and depend on nth order multipoint stability matrices containing signatures of chaos. Simulations for the Lorentz gas demonstrate that finite field algorithms can be effectively used for the robust, long time calculation of nonlinear response functions. These offer the possibility to characterize chaos beyond the commonly used Lyapunov exponents and suggest new experimentally accessible measures of chaos.
引用
收藏
页数:4
相关论文
共 18 条
[1]  
[Anonymous], FEMTOCHEMISTRY FEMTO
[2]  
[Anonymous], 1987, COMPUTER SIMULATIONS, DOI DOI 10.2307/2938686
[3]   Calculations of nonlinear spectra of liquid Xe. I. Third-order Raman response [J].
Cao, JS ;
Wu, JL ;
Yang, SL .
JOURNAL OF CHEMICAL PHYSICS, 2002, 116 (09) :3739-3759
[4]  
Denny R A, 2001, Phys Rev E Stat Nonlin Soft Matter Phys, V63, P065101
[5]  
ELSAESSER T, 2000, ULTRAFAST PHENOMENA, V12
[6]  
Ernst R.R., 1987, Principles of nuclear magnetic resonance in one and two dimensions
[7]   Interaction induced effects in the nonlinear Raman response of liquid CS2:: A finite field nonequilibrium molecular dynamics approach [J].
Jansen, TLC ;
Snijders, JG ;
Duppen, K .
JOURNAL OF CHEMICAL PHYSICS, 2001, 114 (24) :10910-10921
[8]  
KUBO R, 1991, STAT PHYSICS, V2
[9]   Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses [J].
Levis, RJ ;
Menkir, GM ;
Rabitz, H .
SCIENCE, 2001, 292 (5517) :709-713
[10]   Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski's equality [J].
Liphardt, J ;
Dumont, S ;
Smith, SB ;
Tinoco, I ;
Bustamante, C .
SCIENCE, 2002, 296 (5574) :1832-1835