Absorption problems for quantum walks in one dimension

被引:20
作者
Konno, N [1 ]
Namiki, T
Soshi, T
Sudbury, A
机构
[1] Yokohama Natl Univ, Dept Appl Math, Fac Engn, Hodogaya Ku, Yokohama, Kanagawa 2408501, Japan
[2] Hokkaido Univ, Div Math, Grad Sch Sci, Kita Ku, Sapporo, Hokkaido 0600810, Japan
[3] Monash Univ, Dept Math & Stat, Clayton, Vic 3168, Australia
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2003年 / 36卷 / 01期
关键词
D O I
10.1088/0305-4470/36/1/316
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper treats absorption problems for the one-dimensional quantum walk determined by a 2 x 2 unitary matrix U on a state space {0, 1,..., N} where N is finite or infinite by using a new path integral approach based on an orthonormal basis P, Q, R and S of the vector space of complex 2 x 2 matrices. Our method studied here is a natural extension of the approach in the classical random walk.
引用
收藏
页码:241 / 253
页数:13
相关论文
共 17 条
[1]  
Andris Ambainis, 2001, P 33 ANN ACM S THEOR, P37, DOI DOI 10.1145/380752.380757
[2]  
[Anonymous], 2009, Quantum computation and quantum information, DOI DOI 10.1119/1.1463744
[3]  
BACH E, 2002, QUANTPH0207008
[4]  
BRYLINSKY RK, 2002, MATH QUANTUM INFORMA
[5]   An Example of the Difference Between Quantum and Classical Random Walks [J].
Childs, Andrew M. ;
Farhi, Edward ;
Gutmann, Sam .
QUANTUM INFORMATION PROCESSING, 2002, 1 (1-2) :35-43
[6]  
Dorit Aharonov, 2001, P 33 ANN ACM S THEOR, P50, DOI DOI 10.1145/380752.380758
[7]  
DUR W, 2002, QUANTPH0207137
[8]  
Durrett Rick., 1999, Essentials of stochastic processes
[9]  
Grimmett G.R., 1992, Probability and Random Processes, V2nd
[10]  
KEMPE J, 2002, QUANTPH0205083