Force-displacement relationships for spherical inclusions in finite elastic media

被引:12
作者
Lin, DC [1 ]
Langrana, NA
Yurke, B
机构
[1] Rutgers State Univ, Dept Mech & Aerosp Engn, Piscataway, NJ 08854 USA
[2] Bell Labs, Murray Hill, NJ 07974 USA
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.1847698
中图分类号
O59 [应用物理学];
学科分类号
摘要
Here we present derivations of the force-displacement relationship for a rigid spherical inclusion embedded in homogeneous, isotropic, linear solids. Formulas are given for both the case of perfect interfacial bonding (no slip) and the case of a sliding contact (slip) between the medium and the inclusion. The formulas are applicable to both compressible and incompressible solids and are applicable for elastic media of finite extent. The results allow the determination of the elastic modulus of the medium from force-displacement measurements on the inclusion provided Poisson's ratio is known. We find that, when the size of the medium is much larger than that of the inclusion, the inclusion displacement in response to an applied force is 50% larger when slip is present. (C) 2005 American Institute of Physics.
引用
收藏
页数:4
相关论文
共 27 条
[1]  
Laurent V.M., Henon S., Planus E., Fodil R., Balland M., Isabey D., Gallet F., J. Biomech. Eng., 124, (2002)
[2]  
Gosse C., Croquette V., Biophys. J., 82, (2002)
[3]  
Keller M., Schilling J., Sackmann E., Rev. Sci. Instrum., 72, (2001)
[4]  
Wilhelm C., Elias F., Browaeys J., Ponton A., Bacri J.C., Phys. Rev. E, 66, (2002)
[5]  
Amblard F., Maggs A.C., Yurke B., Pargellis A.N., Leibler S., Phys. Rev. Lett., 77, (1996)
[6]  
Amblard F., Yurke B., Pargellis A., Leibler S., Rev. Sci. Instrum., 67, (1996)
[7]  
Ziemann F., Radler J., Sackmann E., Biophys. J., 66, (1994)
[8]  
Hosu B.G., Jakab K., Rev. Sci. Instrum., 74, (2003)
[9]  
Bausch A.R., Hellerer U., Essler M., Aephelbacher M., Sackmann E., Biophys. J., 80, (2001)
[10]  
Bausch A.R., Moller W., Sackmann E., Biophys. J., 76, (1999)