Multiwalled Carbon Nanotubes-Embedded Electrospun Bacterial Cellulose Nanofibers

被引:27
作者
Chen, Peng [1 ]
Yun, Young Soo [1 ]
Bak, Hyeonseong [1 ]
Cho, Se Youn [1 ]
Jin, Hyoung-Joon [1 ]
机构
[1] Inha Univ, Dept Polymer Sci & Engn, Inchon 402751, South Korea
关键词
DISSOLUTION; BEHAVIOR;
D O I
10.1080/15421401003613659
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Multiwalled carbon nanotubes (MWCNTs) were embedded in electrospun bacterial cellulose (BC) nanofibers, which were prepared using an electrospinning method. In this study, Gluconacetobacter xylinum BRC5 was employed to produce a hydrogel-like bacterial cellulose (BC) sheet. BC was difficult to process in the solution stat because of the large concentration of intra- or inter-molecular hydrogen bonds. In this study, an ionic liquid, 1-allyl-3-methyl-imidazolium chloride, was used to dissolve BC. To form BC nanofibers, 5wt% BC solutions both with and without MWCNTs were electrospun. Scanning electron microscopy and transmission electron microscopy showed that the MWCNTs were embedded and well aligned along the fiber axis. The crystalline polymorph transformed from cellulose I (pristine BC) to cellulose II (electrospun regenerated BC fibers). Moreover, the tensile strength and modulus of the MWCNT-embedded electrospun BC nanofibers increased by approximately 290% and 280%, respectively. Additionally, the thermal stability and electrical conductivity of the MWCNT-embedded electrospun BC nanofibers also increased compared to pristine BC.
引用
收藏
页码:169 / 178
页数:10
相关论文
共 25 条
[1]  
Andrews R, 2002, MACROMOL MATER ENG, V287, P395, DOI 10.1002/1439-2054(20020601)287:6<395::AID-MAME395>3.0.CO
[2]  
2-S
[3]   Kinetics of precipitation of cellulose from cellulose-NMMO-water solutions [J].
Biganska, O ;
Navard, P .
BIOMACROMOLECULES, 2005, 6 (04) :1948-1953
[4]   Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: Structure and properties [J].
Cai, Jie ;
Zhang, Lina ;
Zhou, Jinping ;
Qi, Haisong ;
Chen, Hui ;
Kondo, Tetsuo ;
Chen, Xuming ;
Chu, Benjamin .
ADVANCED MATERIALS, 2007, 19 (06) :821-+
[5]   New solvents for cellulose: Hydrazine/thiocyanate salt system [J].
Hattori, K ;
Cuculo, JA ;
Hudson, SM .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2002, 40 (04) :601-611
[6]   Bacterial cellulose - a masterpiece of nature's arts [J].
Iguchi, M ;
Yamanaka, S ;
Budhiono, A .
JOURNAL OF MATERIALS SCIENCE, 2000, 35 (02) :261-270
[7]   HELICAL MICROTUBULES OF GRAPHITIC CARBON [J].
IIJIMA, S .
NATURE, 1991, 354 (6348) :56-58
[8]  
JIANG H, 2007, KEY ENG MATER, V923, P330
[9]   Production and application of microbial cellulose [J].
Jonas, R ;
Farah, LF .
POLYMER DEGRADATION AND STABILITY, 1998, 59 (1-3) :101-106
[10]  
KAKUGO A, 2007, CELLULOSE COMMUNICAT, V14, P50