Short-term forecasting of solar radiation:: A statistical approach using satellite data

被引:187
作者
Hammer, A [1 ]
Heinemann, D [1 ]
Lorenz, E [1 ]
Lückehe, B [1 ]
机构
[1] Univ Oldenburg, Fac Phys, Dept Energy & Semicond Res, D-26111 Oldenburg, Germany
关键词
D O I
10.1016/S0038-092X(00)00038-4
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Short-term forecasting of solar irradiance is an important issue for many fields of solar energy applications. As the solar surface irradiance can be inferred from satellite measurements with a high temporal and spatial resolution, we use satellite images as a data source for forecasting. The satellite data provide information on cloudiness, the most important atmospheric parameter for surface irradiance. This paper describes the application of a statistical method to detect the motion of cloud structures from satellite images. Extrapolating the temporal development of the cloud situation, solar radiation can be predicted For time scales from 30 min up to 2 h. The forecasts are evaluated with respect to accuracy and an example for the application of the forecast algorithm to predict PV power output is presented. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:139 / 150
页数:12
相关论文
共 8 条
  • [1] A functional analytic method to derive displacement vector fields from satellite image sequences
    Bannehr, L
    Rohn, M
    Warnecke, G
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 1996, 17 (02) : 383 - 392
  • [2] Beyer H. G., 1994, P 12 EUR PHOT SOL EN, P1718
  • [3] A METHOD FOR THE DETERMINATION OF THE GLOBAL SOLAR-RADIATION FROM METEOROLOGICAL SATELLITE DATA
    CANO, D
    MONGET, JM
    ALBUISSON, M
    GUILLARD, H
    REGAS, N
    WALD, L
    [J]. SOLAR ENERGY, 1986, 37 (01) : 31 - 39
  • [4] CHOWDHURY BH, 1987, THESIS VIRGINIA POLY
  • [5] A neural network-based method for tracking features from satellite sensor images
    Cote, S
    Tatnall, ARL
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 1995, 16 (18) : 3695 - 3701
  • [6] HEINEMANN D, 1990, THESIS U OLDENBURG
  • [7] Jensenius JS, 1989, SOLAR RESOURCES, P335
  • [8] BAYESIAN-ESTIMATION OF MOTION VECTOR-FIELDS
    KONRAD, J
    DUBOIS, E
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1992, 14 (09) : 910 - 927