Folding and assembly of β-barrel membrane proteins

被引:214
作者
Tamm, LK [1 ]
Hong, H [1 ]
Liang, BY [1 ]
机构
[1] Univ Virginia, Hlth Sci Ctr, Dept Mol Physiol & Biol Phys, Charlottesville, VA 22908 USA
来源
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES | 2004年 / 1666卷 / 1-2期
关键词
lipid-protein interaction; hydrophobic mismatch; membrane curvature; OmpA; equilibrium folding; folding inter-mediate; E. coli lipid;
D O I
10.1016/j.bbamem.2004.06.011
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Beta-barrel membrane proteins occur in the outer membranes of Gram-negative bacteria, mitochondria and chloroplasts. The membrane-spanning sequences of beta-barrel membrane proteins are less hydrophobic than those of alpha-helical membrane proteins, which is probably the main reason why completely different folding and membrane assembly pathways have evolved for these two classes of membrane proteins. Some beta-barrel membrane proteins can be spontaneously refolded into lipid bilayer model membranes in vitro. They may also have this ability in vivo although lipid and protein chaperones likely assist with their assembly in appropriate target membranes. This review summarizes recent work on the thermodynamic stability and the mechanism of membrane insertion of beta-barrel membrane proteins in lipid model and biological membranes. How lipid compositions affect folding and assembly of beta-barrel membrane proteins is also reviewed. The stability of these proteins in membranes is not as large as previously thought (<10 kcal/mol) and is modulated by elastic forces of the lipid bilayer. Detailed kinetic studies indicate that beta-barrel membrane proteins fold in distinct steps with several intermediates that can be characterized in vitro. Formation of the barrel is synchronized with membrane insertion and all beta-hairpins insert simultaneously in a concerted pathway. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:250 / 263
页数:14
相关论文
共 75 条
[1]   Refolded outer membrane protein A of Escherichia coli forms ion channels with two conductance states in planar lipid bilayers [J].
Arora, A ;
Rinehart, D ;
Szabo, G ;
Tamm, LK .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (03) :1594-1600
[2]   Structure of outer membrane protein A transmembrane domain by NMR spectroscopy [J].
Arora, A ;
Abildgaard, F ;
Bushweller, JH ;
Tamm, LK .
NATURE STRUCTURAL BIOLOGY, 2001, 8 (04) :334-338
[3]   IDENTIFICATION OF A PROTEIN REQUIRED FOR DISULFIDE BOND FORMATION INVIVO [J].
BARDWELL, JCA ;
MCGOVERN, K ;
BECKWITH, J .
CELL, 1991, 67 (03) :581-589
[4]   The SurA periplasmic PPlase lacking its parvulin domains functions in vivo and has chaperone activity [J].
Behrens, S ;
Maier, R ;
de Cock, H ;
Schmid, FX ;
Gross, CA .
EMBO JOURNAL, 2001, 20 (1-2) :285-294
[5]   The periplasmic molecular chaperone protein SurA binds a peptide motif that is characteristic of integral outer membrane proteins [J].
Bitto, E ;
McKay, DB .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (49) :49316-49322
[6]   Crystallographic structure of SurA, a molecular chaperone that facilitates folding of outer membrane porins [J].
Bitto, E ;
McKay, DB .
STRUCTURE, 2002, 10 (11) :1489-1498
[7]   Lipid-assisted protein folding [J].
Bogdanov, M ;
Dowhan, W .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (52) :36827-36830
[8]   Stability studies of FhuA, a two-domain outer membrane protein from Escherichia coli [J].
Bonhivers, M ;
Desmadril, M ;
Moeck, GS ;
Boulanger, P ;
Colomer-Pallas, A ;
Letellier, L .
BIOCHEMISTRY, 2001, 40 (08) :2606-2613
[9]  
Buchanan SK, 1999, NAT STRUCT BIOL, V6, P56
[10]   Folding and insertion of the outer membrane protein OmpA is assisted by the chaperone Skp and by lipopolysaccharide [J].
Bulieris, PV ;
Behrens, S ;
Holst, O ;
Kleinschmidt, JH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (11) :9092-9099