Human mitochondrial complex I assembles through the combination of evolutionary conserved modules: a framework to interpret complex I deficiencies

被引:145
作者
Ugalde, C [1 ]
Vogel, R [1 ]
van den Heuvel, B [1 ]
Smeitink, J [1 ]
Nijtmans, L [1 ]
机构
[1] Univ Med Ctr Nijmegen, Dept Pediat, Nijmegen Ctr Mitochondrial Disorders, NL-6500 HB Nijmegen, Netherlands
关键词
D O I
10.1093/hmg/ddh262
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
With 46 subunits, human mitochondrial complex I is the largest enzyme of the oxidative phosphorylation system. We have studied the assembly of complex I in cultured human cells. This will provide essential information about the nature of complex I deficiencies and will enhance our understanding of mitochondrial disease mechanisms. We have found that 143B206 rho zero cells, not containing mitochondrial DNA, are still able to form complex I subcomplexes. To further address the nature of these subcomplexes, we depleted 143B osteosarcoma cells of complex I by inhibiting mitochondrial protein translation with doxycycline. After removing this drug, complex I formation resumes and assembly intermediates were observed by two-dimensional blue native electrophoresis. Analysis of the observed subcomplexes indicates that assembly of human complex I is a semi-sequential process in which different preassembled subcomplexes are joined to form a fully assembled complex. The membrane part of the complex is formed in distinct steps. The B17 subunit is part of a subcomplex to which ND1, ND6 and PSST are subsequently added. This is bound to a hydrophilic subcomplex containing the 30 and 49 kDa subunits, to which a subcomplex including the 39 kDa subunit is incorporated, and later on the 18 and 24 kDa subunits. At a later stage more subunits, including the 15 kDa, are added and holo-complex I is formed. Our results suggest that human complex I assembly resembles that of Neurospora crassa, in which a membrane arm is formed and assembled to a preformed peripheral arm, and support ideas about modular evolution.
引用
收藏
页码:2461 / 2472
页数:12
相关论文
共 53 条
[1]   Respiratory complex III is required to maintain complex I in mammalian mitochondria [J].
Acín-Pérez, R ;
Bayona-Bafaluy, MP ;
Fernández-Silva, P ;
Moreno-Loshuertos, R ;
Perez-Martos, A ;
Bruno, C ;
Moraes, CT ;
Enríquez, JA .
MOLECULAR CELL, 2004, 13 (06) :805-815
[2]   Identification and characterization of a common set of complex I assembly intermediates in mitochondria from patients with complex I deficiency [J].
Antonicka, H ;
Ogilvie, I ;
Taivassalo, T ;
Anitori, RP ;
Haller, RG ;
Vissing, J ;
Kennaway, NG ;
Shoubridge, EA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (44) :43081-43088
[3]   The mtDNA-encoded ND6 subunit of mitochondrial NADH dehydrogenase is essential for the assembly of the membrane arm and the respiratory function of the enzyme [J].
Bai, YD ;
Attardi, G .
EMBO JOURNAL, 1998, 17 (16) :4848-4858
[4]   Cytochrome oxidase in health and disease [J].
Barrientos, A ;
Barros, MH ;
Valnot, I ;
Rötig, A ;
Rustin, P ;
Tzagoloff, A .
GENE, 2002, 286 (01) :53-63
[5]   Mutant NDUFS3 subunit of mitochondrial complex I causes Leigh syndrome [J].
Bénit, P ;
Slama, A ;
Cartault, F ;
Giurgea, I ;
Chretien, D ;
Lebon, S ;
Marsac, C ;
Munnich, A ;
Rötig, A ;
Rustin, P .
JOURNAL OF MEDICAL GENETICS, 2004, 41 (01) :14-17
[6]   Impact of mutations affecting ND mitochondria-encoded Subunits on the activity and assembly of complex I in chlamydomonas. Implication for the structural organization of the enzyme [J].
Cardol, P ;
Matagne, RF ;
Remacle, C .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 319 (05) :1211-1221
[7]   Analysis of the subunit composition of complex I from bovine heart mitochondria [J].
Carroll, J ;
Fearnley, IM ;
Shannon, RJ ;
Hirst, J ;
Walker, JE .
MOLECULAR & CELLULAR PROTEOMICS, 2003, 2 (02) :117-126
[8]   Definition of the nuclear encoded protein composition of bovine heart mitochondrial complex I - Identification of two new subunits [J].
Carroll, J ;
Shannon, RJ ;
Fearnley, IM ;
Walker, JE ;
Hirst, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (52) :50311-50317
[9]   Mechanisms of disease: Mitochondrial respiratory-chain diseases [J].
DiMauro, S ;
Schon, EA .
NEW ENGLAND JOURNAL OF MEDICINE, 2003, 348 (26) :2656-2668
[10]  
DUARTE M, 1995, GENETICS, V139, P1211