Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction

被引:1066
作者
Larsson, MC [1 ]
Domingos, AI [1 ]
Jones, WD [1 ]
Chiappe, ME [1 ]
Amrein, H [1 ]
Vosshall, LB [1 ]
机构
[1] Rockefeller Univ, Lab Neurogenet & Behav, New York, NY 10021 USA
关键词
D O I
10.1016/j.neuron.2004.08.019
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Fruit flies are attracted by a diversity of odors that signal the presence of food, potential mates, or attractive egg-laying sites. Most Drosophila olfactory neurons express two types of odorant receptor genes: Or83b, a broadly expressed receptor of unknown function, and one or more members of a family of 61 selectively expressed receptors. While the conventional odorant receptors are highly divergent, Or83b is remarkably conserved between insect species. Two models could account for Or83b function: it could interact with specific odor stimuli independent of conventional odorant receptors, or it could act in concert with these receptors to mediate responses to all odors. Our results support the second model. Dendritic localization of conventional odorant receptors is abolished in Or83b mutants. Consistent with this cellular defect, the Or83b mutation disrupts behavioral and electrophysiological responses to many odorants. Or83b therefore encodes an atypical odorant receptor that plays an essential general role in olfaction.
引用
收藏
页码:703 / 714
页数:12
相关论文
共 56 条
[1]   The molecular receptive range of an odorant receptor [J].
Araneda, RC ;
Kini, AD ;
Firestein, S .
NATURE NEUROSCIENCE, 2000, 3 (12) :1248-1255
[2]   OLFACTORY PHYSIOLOGY IN THE DROSOPHILA ANTENNA AND MAXILLARY PALP - ACJ6 DISTINGUISHES 2 CLASSES ODORANT PATHWAYS [J].
AYER, RK ;
CARLSON, J .
JOURNAL OF NEUROBIOLOGY, 1992, 23 (08) :965-982
[3]   Altered electrical properties in Drosophila neurons developing without synaptic transmission [J].
Baines, RA ;
Uhler, JP ;
Thompson, A ;
Sweeney, ST ;
Bate, M .
JOURNAL OF NEUROSCIENCE, 2001, 21 (05) :1523-1531
[4]  
BRAND AH, 1993, DEVELOPMENT, V118, P401
[5]   ALLELIC INACTIVATION REGULATES OLFACTORY RECEPTOR GENE-EXPRESSION [J].
CHESS, A ;
SIMON, I ;
CEDAR, H ;
AXEL, R .
CELL, 1994, 78 (05) :823-834
[6]  
Clyne Peter, 1997, Invertebrate Neuroscience, V3, P127, DOI 10.1007/BF02480367
[7]   A novel family of divergent seven-transmembrane proteins:: Candidate odorant receptors in Drosophila [J].
Clyne, PJ ;
Warr, CG ;
Freeman, MR ;
Lessing, D ;
Kim, JH ;
Carlson, JR .
NEURON, 1999, 22 (02) :327-338
[8]  
de Bruyne M, 1999, J NEUROSCI, V19, P4520
[9]   Odor coding in the Drosophila antenna [J].
de Bruyne, M ;
Foster, K ;
Carlson, JR .
NEURON, 2001, 30 (02) :537-552
[10]   Integrating the molecular and cellular basis of odor coding in the Drosophila antenna [J].
Dobritsa, AA ;
van der Goes van Naters, W ;
Warr, CG ;
Steinbrecht, RA ;
Carlson, JR .
NEURON, 2003, 37 (05) :827-841