Positive and negative regulation of cellular sensitivity to anti-cancer drugs by FGF-2

被引:15
作者
Coleman, AB [1 ]
机构
[1] Beckman Res Inst City Hope, Div Mol Med, Duarte, CA 91010 USA
关键词
FGF-2; FGFR; chemotherapy; drug resistance;
D O I
10.1016/S1368-7646(03)00023-2
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The development of resistance to chemotherapy by tumor cells remains a constant limitation to the treatment of cancer. Over the last several years, fibroblast growth factor-2 (FGF-2) has emerged as a growth factor that is capable of modifying the sensitivity of normal and tumor cells to anti-cancer drugs. FGF-2 can produce both drug resistance and drug sensitization in different cell types treated with a variety of cytotoxic agents. An understanding of the differential cellular trafficking and biological activities of the multiple FGF-2 isoforms will help in determining the circumstances tinder which FGF-2 acts to inhibit versus potentiate drug action. Recent advances suggest that expression of FGF-2 in tumor cells is involved with loss of response to chemotherapy in vivo. Thus, the manipulation of FGF-2 activities to increase the effectiveness of chemotherapeutic agents may have important clinical implications. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:85 / 94
页数:10
相关论文
共 75 条
[1]   HUMAN BASIC FIBROBLAST GROWTH-FACTOR - NUCLEOTIDE-SEQUENCE AND GENOMIC ORGANIZATION [J].
ABRAHAM, JA ;
WHANG, JL ;
TUMOLO, A ;
MERGIA, A ;
FRIEDMAN, J ;
GOSPODAROWICZ, D ;
FIDDES, JC .
EMBO JOURNAL, 1986, 5 (10) :2523-2528
[2]   The Bcl-2 protein family: Arbiters of cell survival [J].
Adams, JM ;
Cory, S .
SCIENCE, 1998, 281 (5381) :1322-1326
[3]   The radioprotective effect of the 24 kDa FGF-2 isoform in HeLa cells is related to an increased expression and activity of the DNA dependent protein kinase (DNA-PK) catalytic subunit [J].
Ader, I ;
Muller, C ;
Bonnet, J ;
Favre, G ;
Cohen-Jonathan, E ;
Salles, B ;
Toulas, C .
ONCOGENE, 2002, 21 (42) :6471-6479
[4]   DNA-BASE MODIFICATIONS INDUCED IN ISOLATED HUMAN CHROMATIN BY NADH DEHYDROGENASE-CATALYZED REDUCTION OF DOXORUBICIN [J].
AKMAN, SA ;
DOROSHOW, JH ;
BURKE, TG ;
DIZDAROGLU, M .
BIOCHEMISTRY, 1992, 31 (13) :3500-3506
[5]   FIBROBLAST GROWTH FACTOR-II (FGF-2) IN THE NUCLEUS - TRANSLOCATION PROCESS AND TARGETS [J].
AMALRIC, F ;
BOUCHE, G ;
BONNET, H ;
BRETHENOU, P ;
ROMAN, AM ;
TRUCHET, I ;
QUARTO, N .
BIOCHEMICAL PHARMACOLOGY, 1994, 47 (01) :111-115
[6]   Nuclear activities of basic fibroblast growth factor: Potentiation of low-serum growth mediated by natural or chimeric nuclear localization signals [J].
Arese, M ;
Chen, Y ;
Florkiewicz, RZ ;
Gualandris, A ;
Shen, B ;
Rifkin, DB .
MOLECULAR BIOLOGY OF THE CELL, 1999, 10 (05) :1429-1444
[7]   PITUITARY EXTRACTS AND STEROID-HORMONES IN CONTROL 3T3-CELL GROWTH [J].
ARMELIN, HA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1973, 70 (09) :2702-2706
[8]  
Arnaud E, 1999, MOL CELL BIOL, V19, P505
[9]   DIFFERENTIAL MODULATION OF CELL PHENOTYPE BY DIFFERENT MOLECULAR-WEIGHT FORMS OF BASIC FIBROBLAST GROWTH-FACTOR - POSSIBLE INTRACELLULAR SIGNALING BY THE HIGH-MOLECULAR-WEIGHT FORMS [J].
BIKFALVI, A ;
KLEIN, S ;
PINTUCCI, G ;
QUARTO, N ;
MIGNATTI, P ;
RIFKIN, DB .
JOURNAL OF CELL BIOLOGY, 1995, 129 (01) :233-243
[10]   FGF signals for cell proliferation and migration through different pathways [J].
Boilly, B ;
Vercoutter-Edouart, AS ;
Hondermarck, H ;
Nurcombe, V ;
Le Bourhis, X .
CYTOKINE & GROWTH FACTOR REVIEWS, 2000, 11 (04) :295-302