Non-parametric Bayesian graph models reveal community structure in resting state fMRI

被引:15
作者
Andersen, Kasper Winther [1 ,2 ]
Madsen, Kristoffer H. [2 ]
Siebner, Hartwig Roman [2 ,3 ,4 ]
Schmidt, Mikkel N. [1 ]
Morup, Morten [1 ]
Hansen, Lars Kai [1 ]
机构
[1] Tech Univ Denmark, Dept Appl Math & Comp Sci, DK-2800 Lyngby, Denmark
[2] Copenhagen Univ Hosp Hvidovre, Danish Res Ctr Magnet Resonance, Dept 714, Ctr Funct & Diagnost Imaging & Res, DK-2650 Hvidovre, Denmark
[3] Univ Copenhagen, Fac Hlth & Med Sci, Dept Clin Med, DK-2200 Copenhagen N, Denmark
[4] Copenhagen Univ Hosp Bispebjerg, Dept Neurol, DK-2400 Copenhagen NV, Denmark
关键词
Complex network; Graph theory; Infinite Relational Model; Bayesian Community Detection; Resting state fMRI; HUMAN BRAIN; ORGANIZATION; NETWORKS; MODULARITY; SIGNAL; MRI;
D O I
10.1016/j.neuroimage.2014.05.083
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Modeling of resting state functional magnetic resonance imaging (rs-fMRI) data using network models is of increasing interest. It is often desirable to group nodes into clusters to interpret the communication patterns between nodes. In this study we consider three different nonparametric Bayesian models for node clustering in complex networks. In particular, we test their ability to predict unseen data and their ability to reproduce clustering across datasets. The three generative models considered are the Infinite Relational Model (IRM), Bayesian Community Detection (BCD), and the Infinite Diagonal Model (IDM). The models define probabilities of generating links within and between clusters and the difference between the models lies in the restrictions they impose upon the between-cluster link probabilities. IRM is the most flexible model with no restrictions on the probabilities of links between clusters. BCD restricts the between-cluster link probabilities to be strictly lower than within-cluster link probabilities to conform to the community structure typically seen in social networks. IDM only models a single between-cluster link probability, which can be interpreted as a background noise probability. These probabilistic models are compared against three other approaches for node clustering, namely Infomap, Louvain modularity, and hierarchical clustering. Using 3 different datasets comprising healthy volunteers' rs-fMRI we found that the BCD model was in general the most predictive and reproducible model. This suggests that rs-fMRI data exhibits community structure and furthermore points to the significance of modeling heterogeneous between-cluster link probabilities. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:301 / 315
页数:15
相关论文
共 54 条
[1]  
Aldous David J., 1985, Ecole d'Ete de Probabilites de Saint-Flour XIII -1983, P1, DOI [10.1007/BFb0099421, DOI 10.1007/BFB0099421]
[2]   Disrupted modularity and local connectivity of brain functional networks in childhood-onset schizophrenia [J].
Alexander-Bloch, Aaron F. ;
Gogtay, Nitin ;
Meunier, David ;
Birn, Rasmus ;
Clasen, Liv ;
Lalonde, Francois ;
Lenroot, Rhoshel ;
Giedd, Jay ;
Bullmore, Edward T. .
FRONTIERS IN SYSTEMS NEUROSCIENCE, 2010, 4
[3]  
Andersen Kasper Winther, 2012, Machine Learning and Interpretation in Neuroimaging. International Workshop (MLINI 2011). Held at NIPS 2011. Revised and Selected and Invited Contributions, P226, DOI 10.1007/978-3-642-34713-9_29
[4]  
Anderson K., 2012, Proceedings of the 2nd KDD workshop on data mining applications in sustainability (SustKDD), P1
[5]  
[Anonymous], 2003, Linked: How everything is connected to everything else and what it means
[6]   Unified segmentation [J].
Ashburner, J ;
Friston, KJ .
NEUROIMAGE, 2005, 26 (03) :839-851
[7]   Dynamic reconfiguration of human brain networks during learning [J].
Bassett, Danielle S. ;
Wymbs, Nicholas F. ;
Porter, Mason A. ;
Mucha, Peter J. ;
Carlson, Jean M. ;
Grafton, Scott T. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (18) :7641-7646
[8]   Separating respiratory-variation-related neuronal-activity-related fluctuations in fluctuations from fMRI [J].
Birn, RM ;
Diamond, JB ;
Smith, MA ;
Bandettini, PA .
NEUROIMAGE, 2006, 31 (04) :1536-1548
[9]   Toward discovery science of human brain function [J].
Biswal, Bharat B. ;
Mennes, Maarten ;
Zuo, Xi-Nian ;
Gohel, Suril ;
Kelly, Clare ;
Smith, Steve M. ;
Beckmann, Christian F. ;
Adelstein, Jonathan S. ;
Buckner, Randy L. ;
Colcombe, Stan ;
Dogonowski, Anne-Marie ;
Ernst, Monique ;
Fair, Damien ;
Hampson, Michelle ;
Hoptman, Matthew J. ;
Hyde, James S. ;
Kiviniemi, Vesa J. ;
Kotter, Rolf ;
Li, Shi-Jiang ;
Lin, Ching-Po ;
Lowe, Mark J. ;
Mackay, Clare ;
Madden, David J. ;
Madsen, Kristoffer H. ;
Margulies, Daniel S. ;
Mayberg, Helen S. ;
McMahon, Katie ;
Monk, Christopher S. ;
Mostofsky, Stewart H. ;
Nagel, Bonnie J. ;
Pekar, James J. ;
Peltier, Scott J. ;
Petersen, Steven E. ;
Riedl, Valentin ;
Rombouts, Serge A. R. B. ;
Rypma, Bart ;
Schlaggar, Bradley L. ;
Schmidt, Sein ;
Seidler, Rachael D. ;
Siegle, Greg J. ;
Sorg, Christian ;
Teng, Gao-Jun ;
Veijola, Juha ;
Villringer, Arno ;
Walter, Martin ;
Wang, Lihong ;
Weng, Xu-Chu ;
Whitfield-Gabrieli, Susan ;
Williamson, Peter ;
Windischberger, Christian .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (10) :4734-4739
[10]   Fast unfolding of communities in large networks [J].
Blondel, Vincent D. ;
Guillaume, Jean-Loup ;
Lambiotte, Renaud ;
Lefebvre, Etienne .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,