A strong ferroelectric ferromagnet created by means of spin-lattice coupling

被引:673
作者
Lee, June Hyuk [1 ,2 ]
Fang, Lei [3 ]
Vlahos, Eftihia [2 ]
Ke, Xianglin [4 ,5 ]
Jung, Young Woo [3 ]
Kourkoutis, Lena Fitting [6 ]
Kim, Jong-Woo [7 ]
Ryan, Philip J. [7 ]
Heeg, Tassilo [1 ]
Roeckerath, Martin [8 ]
Goian, Veronica [9 ]
Bernhagen, Margitta [10 ]
Uecker, Reinhard [10 ]
Hammel, P. Chris [3 ]
Rabe, Karin M. [11 ]
Kamba, Stanislav [9 ]
Schubert, Juergen
Freeland, John W. [7 ]
Muller, David A. [6 ,12 ]
Fennie, Craig J. [6 ]
Schiffer, Peter [4 ,5 ]
Gopalan, Venkatraman [2 ]
Johnston-Halperin, Ezekiel [3 ]
Schlom, Darrell G. [1 ]
机构
[1] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA
[2] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[3] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA
[4] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
[5] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA
[6] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA
[7] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA
[8] Forschungszentrum Julich, JARA Fundamentals Future Informat Technol, Inst Bio & Nanosyst, D-52425 Julich, Germany
[9] Acad Sci Czech Republ, Inst Phys, Prague 18221 8, Czech Republic
[10] Leibniz Inst Crystal Growth, D-12489 Berlin, Germany
[11] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA
[12] Kavli Inst Cornell Nanoscale Sci, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
MAGNETIC-PROPERTIES; OXIDE; SYSTEM;
D O I
10.1038/nature09331
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Ferroelectric ferromagnets are exceedingly rare, fundamentally interesting multiferroic materials that could give rise to new technologies in which the low power and high speed of field-effect electronics are combined with the permanence and routability of voltage-controlled ferromagnetism(1,2). Furthermore, the properties of the few compounds that simultaneously exhibit these phenomena(1-5) are insignificant in comparison with those of useful ferroelectrics or ferromagnets: their spontaneous polarizations or magnetizations are smaller by a factor of 1,000 or more. The same holds for magnetic-or electric-field-induced multiferroics(6-8). Owing to the weak properties of single-phase multiferroics, composite and multilayer approaches involving strain-coupled piezoelectric and magnetostrictive components are the closest to application today(1,2). Recently, however, a new route to ferroelectric ferromagnets was proposed(9) by which magnetically ordered insulators that are neither ferroelectric nor ferromagnetic are transformed into ferroelectric ferromagnets using a single control parameter, strain. The system targeted, EuTiO3, was predicted to exhibit strong ferromagnetism (spontaneous magnetization, similar to 7 Bohr magnetons per Eu) and strong ferroelectricity (spontaneous polarization, similar to 10 mu C cm(-2)) simultaneously under large biaxial compressive strain(9). These values are orders of magnitude higher than those of any known ferroelectric ferromagnet and rival the best materials that are solely ferroelectric or ferromagnetic. Hindered by the absence of an appropriate substrate to provide the desired compression we turned to tensile strain. Here we show both experimentally and theoretically the emergence of a multiferroic state under biaxial tension with the unexpected benefit that even lower strains are required, thereby allowing thicker high-quality crystalline films. This realization of a strong ferromagnetic ferroelectric points the way to high-temperature manifestations of this spin-lattice coupling mechanism(10). Our work demonstrates that a single experimental parameter, strain, simultaneously controls multiple order parameters and is a viable alternative tuning parameter to composition(11) for creating multiferroics.
引用
收藏
页码:954 / U72
页数:6
相关论文
共 47 条
[1]   First-principles calculations of the electronic structure and spectra of strongly correlated systems: The LDA+U method [J].
Anisimov, VI ;
Aryasetiawan, F ;
Lichtenstein, AI .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1997, 9 (04) :767-808
[2]   Low frequency wireless powering of microsystems using piezoelectric-magnetostrictive laminate composites [J].
Bayrashev, A ;
Robbins, WP ;
Ziaie, B .
SENSORS AND ACTUATORS A-PHYSICAL, 2004, 114 (2-3) :244-249
[3]   ENHANCED CURIE TEMPERATURES AND MAGNETOELASTIC DOMAINS IN DY/LU SUPERLATTICES AND FILMS [J].
BEACH, RS ;
BORCHERS, JA ;
MATHENY, A ;
ERWIN, RW ;
SALAMON, MB ;
EVERITT, B ;
PETTIT, K ;
RHYNE, JJ ;
FLYNN, CP .
PHYSICAL REVIEW LETTERS, 1993, 70 (22) :3502-3505
[4]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[5]   Epitaxial strain and superconductivity in La2-xSrxCuO4 thin films -: art. no. 107001 [J].
Bozovic, I ;
Logvenov, G ;
Belca, I ;
Narimbetov, B ;
Sveklo, I .
PHYSICAL REVIEW LETTERS, 2002, 89 (10) :107001-107001
[6]   RARE EARTH TITANATES WITH A PEROVSKITE STRUCTURE [J].
BROUS, J ;
FANKUCHEN, I ;
BANKS, E .
ACTA CRYSTALLOGRAPHICA, 1953, 6 (01) :67-70
[7]   Magnetic properties of insulating RTiO3 thin films [J].
Chae, S. C. ;
Chang, Y. J. ;
Kim, D. -W. ;
Lee, B. W. ;
Choi, I. ;
Jung, C. U. .
JOURNAL OF ELECTROCERAMICS, 2009, 22 (1-3) :216-220
[8]   Enhancement of ferroelectricity in strained BaTiO3 thin films [J].
Choi, KJ ;
Biegalski, M ;
Li, YL ;
Sharan, A ;
Schubert, J ;
Uecker, R ;
Reiche, P ;
Chen, YB ;
Pan, XQ ;
Gopalan, V ;
Chen, LQ ;
Schlom, DG ;
Eom, CB .
SCIENCE, 2004, 306 (5698) :1005-1009
[9]   Impact of misfit dislocations on the polarization instability of epitaxial nanostructured ferroelectric perovskites [J].
Chu, MW ;
Szafraniak, I ;
Scholz, R ;
Harnagea, C ;
Hesse, D ;
Alexe, M ;
Gösele, U .
NATURE MATERIALS, 2004, 3 (02) :87-90
[10]   Electric-Field-Tunable Low Loss Multiferroic Ferrimagnetic-Ferroelectric Heterostructures [J].
Das, Jaydip ;
Song, Young-Yeal ;
Mo, Nan ;
Krivosik, Pavol ;
Patton, Carl E. .
ADVANCED MATERIALS, 2009, 21 (20) :2045-2049