Enhanced levels of endogenous cannabinoids in the globus pallidus are associated with a reduction in movement in an animal model of Parkinson's disease

被引:254
作者
Di Marzo, V
Hill, MP
Bisogno, T
Crossman, AR
Brotchie, JM
机构
[1] Univ Manchester, Sch Biol Sci, Manchester M13 9PT, Lancs, England
[2] CNR, Ist Chim Mol Interesse Biol, I-80072 Arco, Naples, Italy
[3] Motac Neurosci Ltd, Manchester M13 9XX, Lancs, England
关键词
anandamide; 2-arachidonoyl glycerol; cannabinoids; dopamine; receptors;
D O I
10.1096/fj.14.10.1432
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In recent years, cannabinoid receptors and their endogenous ligands (endocannabinoids) have been identified within the brain. The high density of CB1 cannabinoid receptors within the basal ganglia suggests a potential role for endocannabinoids in the control of voluntary movement and in basal ganglia-related movement disorders such as Parkinson's disease. However, whether endocannabinoids play a role in regulating motor behavior in health and disease is unknown. Here we report the presence in two regions of the basal ganglia, the g-lobus pallidus and substantia nigra, of the endocannabinoids 2-arachidonoylglycerol (2AG) and anandamide. The levels of the latter compound are similar to threefold higher than those previously reported in any other brain region. In the reserpine-treated rat, an animal model of Parkinson's disease, suppression of locomotion is accompanied by a sevenfold increase in the levels of the 2AG in the globus pallidus, but not in the other five brain regions analyzed. Stimulation of locomotion in the reserpine-treated rat by either of the two selective agonists of D2 and D1 dopamine receptors, quinpirole and R-(+/-)-3-allyl-6-chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide (Cl-APB), respectively, results in the reduction of both anandamide and 2AG levels in the g-lobus pallidus. Finally, full restoration of locomotion in the reserpine-treated rat is obtained by coadministration of quinpirole and the selective antagonist of the cannabinoid CB1 receptor subtype, SR141716A. These findings indicate a link between endocannabinoid signaling in the globus pallidus and symptoms of Parkinson's disease in the reserpine-treated rat, and suggest that modulation of the endocannabinoid signaling system might prove useful in treating this or other basal ganglia-related movement disorders.
引用
收藏
页码:1432 / 1438
页数:7
相关论文
共 31 条
[1]   Phosphatidic acid as the biosynthetic precursor of the endocannabinoid 2-arachidonoylglycerol in intact mouse neuroblastoma cells stimulated with ionomycin [J].
Bisogno, T ;
Melck, D ;
De Petrocellis, L ;
Di Marzo, V .
JOURNAL OF NEUROCHEMISTRY, 1999, 72 (05) :2113-2119
[2]   Brain regional distribution of endocannabinoids: Implications for their biosynthesis and biological function [J].
Bisogno, T ;
Berrendero, F ;
Ambrosino, G ;
Cebeira, M ;
Ramos, JA ;
Fernandez-Ruiz, JJ ;
Di Marzo, V .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1999, 256 (02) :377-380
[3]   Biosynthesis, release and degradation of the novel endogenous cannabimimetic metabolite 2-arachidonoylglycerol in mouse neuroblastoma cells [J].
Bisogno, T ;
Sepe, N ;
Melck, D ;
Maurelli, S ;
DePetrocellis, L ;
DiMarzo, V .
BIOCHEMICAL JOURNAL, 1997, 322 :671-677
[4]   3,4-DIHYDROXYPHENYLALANINE AND 5-HYDROXYTRYPTOPHAN AS RESERPINE ANTAGONISTS [J].
CARLSSON, A ;
LINDQVIST, M ;
MAGNUSSON, T .
NATURE, 1957, 180 (4596) :1200-1200
[5]   PHARMACOLOGICAL CHARACTERISTICS OF TREMOR, RIGIDITY AND HYPOKINESIA INDUCED BY RESERPINE IN RAT [J].
COLPAERT, FC .
NEUROPHARMACOLOGY, 1987, 26 (09) :1431-1440
[6]   Brain cannabinoid systems as targets for the therapy of neurological disorders [J].
Consroe, P .
NEUROBIOLOGY OF DISEASE, 1998, 5 (06) :534-551
[7]   ISOLATION AND STRUCTURE OF A BRAIN CONSTITUENT THAT BINDS TO THE CANNABINOID RECEPTOR [J].
DEVANE, WA ;
HANUS, L ;
BREUER, A ;
PERTWEE, RG ;
STEVENSON, LA ;
GRIFFIN, G ;
GIBSON, D ;
MANDELBAUM, A ;
ETINGER, A ;
MECHOULAM, R .
SCIENCE, 1992, 258 (5090) :1946-1949
[8]   Endocannabinoids: endogenous cannabinoid receptor ligands with neuromodulatory action [J].
Di Marzo, V ;
Melck, D ;
Bisogno, T ;
De Petrocellis, L .
TRENDS IN NEUROSCIENCES, 1998, 21 (12) :521-528
[9]   FORMATION AND INACTIVATION OF ENDOGENOUS CANNABINOID ANANDAMIDE IN CENTRAL NEURONS [J].
DIMARZO, V ;
FONTANA, A ;
CADAS, H ;
SCHINELLI, S ;
CIMINO, G ;
SCHWARTZ, JC ;
PIOMELLI, D .
NATURE, 1994, 372 (6507) :686-691
[10]   Potential biosynthetic connections between the two cannabimimetic eicosanoids, anandamide and 2-arachidonoyl-glycerol, in mouse neuroblastoma cells [J].
DiMarzo, V ;
DePetrocellis, L ;
Sugiura, T ;
Waku, K .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1996, 227 (01) :281-288