Polarity-tuned energy transfer efficiency in artificial light-harvesting antennae containing carbonyl carotenoids peridinin and fucoxanthin

被引:26
作者
Polivka, Tomas [1 ]
Pellnor, Mathias
Melo, Eurico
Pascher, Torbjorn
Sundstrom, Villy
Osuka, Atsuhiro
Naqvi, K. Razi
机构
[1] Lund Univ, Lund, Sweden
[2] Inst Chem Technol & Biol, Oeiras, Portugal
[3] Kyoto Univ, Grad Sch Sci, Dept Chem, Kyoto, Japan
[4] Norwegian Univ Sci & Technol, Dept Phys, N-7034 Trondheim, Norway
关键词
D O I
10.1021/jp066187j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study focuses on the mechanisms and pathways of energy transfer in two carotenoid-pyropheophorbide dyads serving as an artificial light-harvesting antenna. The dyads contain carbonyl carotenoids peridinin (dyad 1) and fucoxanthin ( dyad 2). Studies of these carotenoids in solution showed a pronounced dependence of the excited-state lifetime on solvent polarity. This dependence was attributed to the presence of a state with intramolecular charge transfer (ICT) character in the excited-state manifold. Here we measured carotenoid-pyropheophorbide energy transfer in solvents with different polarity. Energy transfer occurs on a time scale of 31-44 ps for dyad 1, but it is nearly an order of magnitude slower for dyad 2 (195-280 ps). Energy transfer efficiency varies with solvent polarity, reaching 80% in benzene, 69% in tetrahydrofuran, and 22% in acetonitrile for dyad 1 and 27% in benzene, 19% in tetrahydrofuran, and 13% in acetonitrile for dyad 2. The factors controlling this polarity dependence are (1) the competition of energy transfer rate with the S-1/ICT lifetime, which, for carbonyl carotenoids, is significantly shorter in polar solvents, ( 2) the mutual orientation of the carotenoid and pyropheophorbide moieties, and (3) enhancement of the S-1/ICT dipole moment by increasing the ICT character of the S-1/ICT state in polar solvents. The possibility of tuning energy transfer through solvent polarity in combination with another spectroscopic feature of carbonyl carotenoids, efficient absorption of light in the spectral region close to the maximum of the solar irradiance curve (450-550 nm), makes these dyads attractive for potential application as artificial antenna.
引用
收藏
页码:467 / 476
页数:10
相关论文
共 59 条
[1]   Ultrafast singlet energy transfer competes with intersystem crossing in a multi-center transition metal polypyridine complex [J].
Andersson, J ;
Puntoriero, F ;
Serroni, S ;
Yartsev, A ;
Pascher, T ;
Polívka, T ;
Campagna, S ;
Sundström, V .
CHEMICAL PHYSICS LETTERS, 2004, 386 (4-6) :336-341
[2]   Giant meso-meso-linked porphyrin arrays of micrometer molecular length and their fabrication [J].
Aratani, N ;
Takagi, A ;
Yanagawa, Y ;
Matsumoto, T ;
Kawai, T ;
Yoon, ZS ;
Kim, D ;
Osuka, A .
CHEMISTRY-A EUROPEAN JOURNAL, 2005, 11 (11) :3389-3404
[3]   Tailoring porphyrins and chlorins for self-assembly in biomimetic artificial antenna systems [J].
Balaban, TS .
ACCOUNTS OF CHEMICAL RESEARCH, 2005, 38 (08) :612-623
[4]   Excited state properties of peridinin: Observation of a solvent dependence of the lowest excited singlet state lifetime and spectral behavior unique among carotenoids [J].
Bautista, JA ;
Connors, RE ;
Raju, BB ;
Hiller, RG ;
Sharples, FP ;
Gosztola, D ;
Wasielewski, MR ;
Frank, HA .
JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (41) :8751-8758
[5]   Active transport of Ca2+ by an artificial photosynthetic membrane [J].
Bennett, IM ;
Farfano, HMV ;
Bogani, F ;
Primak, A ;
Liddell, PA ;
Otero, L ;
Sereno, L ;
Silber, JJ ;
Moore, AL ;
Moore, TA ;
Gust, D .
NATURE, 2002, 420 (6914) :398-401
[6]   A simple artificial light-harvesting dyad as a model for excess energy dissipation in oxygenic photosynthesis [J].
Berera, R ;
Herrero, C ;
van Stokkum, IHM ;
Vengris, M ;
Kodis, G ;
Palacios, RE ;
van Amerongen, H ;
van Grondelle, R ;
Gust, D ;
Moore, TA ;
Moore, AL ;
Kennis, JTM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (14) :5343-5348
[7]  
Billsten HH, 2002, CHEM PHYS LETT, V355, P465, DOI 10.1016/S0009-2614(02)00268-3
[8]   Light induced manganese oxidation and long-lived charge separation in a Mn2II,II-RuII (bpy)3-acceptor triad [J].
Borgström, M ;
Shaikh, N ;
Johansson, O ;
Anderlund, MF ;
Styring, S ;
Åkermark, B ;
Magnuson, A ;
Hammarström, L .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (49) :17504-17515
[9]  
Britton G., 1995, Carotenoids: Spectroscopy, V1B, P13
[10]   Energy transfer followed by electron transfer in a supramolecular triad composed of boron dipyrrin, zinc porphyrin, and fullerene: A model for the photosynthetic antenna-reaction center complex [J].
D'Souza, F ;
Smith, PM ;
Zandler, ME ;
McCarty, AL ;
Itou, M ;
Araki, Y ;
Ito, O .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (25) :7898-7907