Bioluminescent Escherichia coli Strains for the Quantitative Detection of Phosphate and Ammonia in Coastal and Suburban Watersheds

被引:11
作者
Cardemil, Cristina V. [1 ]
Smulski, Dana R. [2 ]
LaRossa, Robert A. [2 ]
Vollmer, Amy Cheng [1 ]
机构
[1] Swarthmore Coll, Dept Biol, Swarthmore, PA 19081 USA
[2] DuPont Co Inc, Cent Res & Dev, Wilmington, DE USA
关键词
NUCLEOTIDE-SEQUENCE; GENE; NITROGEN; FUSION; LUX; EXPRESSION; INDUCTION; BIOAVAILABILITY; PROMOTER; BACTERIA;
D O I
10.1089/dna.2009.0984
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Accumulation of phosphate and ammonia in estuarine systems and subsequent dinoflagellate and algal blooms has been implicated in fish kills and in health risks for fishermen. Analytic chemistry kits are used to measure phosphate and ammonia levels in water samples, but their sensitivity is limited due to specificity for inorganic forms of these moieties. An Escherichia coli bioluminescent reporter system measured the bioavailability of inorganic nutrients through fusion of E. coli promoters (phoA or glnAp2) to the luxCDABE operon of Vibrio fischeri carried either on the chromosome or on a multicopy plasmid vector, resulting in emission of light in response to phosphate or ammonia starvation. Responses were shown to be under the control of expected physiological regulators, phoB and glnFG, respectively. Standard curves were used to determine the phosphate and ammonia levels in water samples from diverse watersheds located in the northeastern United States. Bioluminescence produced in response to nutrient starvation correlated with concentrations of phosphate (1-24 ppm) and ammonia (0.1-1.6 ppm). While the ammonia biosensor measured nutrient concentrations in tested water samples that were comparable to the amounts reported by a commercial kit, the phosphate biosensor reported higher levels of phosphate in Chesapeake water samples than did the kit.
引用
收藏
页码:519 / 531
页数:13
相关论文
共 57 条
[1]  
Bachmann BJ., 1996, ESCHERICHIA COLI SAL, P2460
[2]   Oxidative stress detection with Escherichia coli harboring a katG'::lux fusion [J].
Belkin, S ;
Smulski, DR ;
Vollmer, AC ;
VanDyk, TK ;
LaRossa, RA .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1996, 62 (07) :2252-2256
[3]   A panel of stress-responsive luminous bacteria for the detection of selected classes of toxicants [J].
Belkin, S ;
Smulski, DR ;
Dadon, S ;
Vollmer, AC ;
Van Dyk, TK ;
Larossa, RA .
WATER RESEARCH, 1997, 31 (12) :3009-3016
[4]   Microbial whole-cell sensing systems of environmental pollutants [J].
Belkin, S .
CURRENT OPINION IN MICROBIOLOGY, 2003, 6 (03) :206-212
[5]  
Belkin S., 1994, BIOLUMINESCENCE CHEM, P509
[6]  
Belval D.L., 1999, Monitoring nutrients in the major rivers draining to Chesapeake Bay
[7]   BIOCHEMICAL PARAMETERS OF GLUTAMINE-SYNTHETASE FROM KLEBSIELLA-AEROGENES [J].
BENDER, RA ;
JANSSEN, KA ;
RESNICK, AD ;
BLUMENBERG, M ;
FOOR, F ;
MAGASANIK, B .
JOURNAL OF BACTERIOLOGY, 1977, 129 (02) :1001-1009
[8]   Pfiesteria piscicida and other Pfiesteria-like dinoflagellates: Behavior, impacts, and environmental controls [J].
Burkholder, JM ;
Glasgow, HB .
LIMNOLOGY AND OCEANOGRAPHY, 1997, 42 (05) :1052-1075
[9]  
CASADABAN MJ, 1979, P NATL ACAD SCI USA, V76, P4530, DOI 10.1073/pnas.76.9.4530
[10]   ANALYSIS OF GENE-CONTROL SIGNALS BY DNA-FUSION AND CLONING IN ESCHERICHIA-COLI [J].
CASADABAN, MJ ;
COHEN, SN .
JOURNAL OF MOLECULAR BIOLOGY, 1980, 138 (02) :179-207