Identification method analyses for the scalar generalized moving Preisach model using major hysteresis loops

被引:10
作者
Andrei, P [1 ]
Stancu, A [1 ]
机构
[1] Alexandru Ioan Cuza Univ, Dept Elect, Iasi 6600, Romania
关键词
identification methods; Preisach model;
D O I
10.1109/20.875260
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A parametric identification strategy for the generalized moving Preisach model is presented. As it requires only the major hysteresis loop (to determine the distribution parameters) and the remanent major hysteresis loop (to determine the moving parameter), it is less sensitive to the presence of the usual experimental errors than other identification methods. The Preisach distribution function is considered to be in general a bivariate function. The method is verified on various commercial magnetic media.
引用
收藏
页码:1982 / 1989
页数:8
相关论文
共 19 条
[1]   Differential Preisach model for the description of dynamic magnetization processes [J].
Andrei, P ;
Stancu, A ;
Caltun, O .
JOURNAL OF APPLIED PHYSICS, 1998, 83 (11) :6359-6361
[2]   Differential phenomenological models for the magnetization processes in soft MnZn ferrites [J].
Andrei, P ;
Caltun, O ;
Stancu, A .
IEEE TRANSACTIONS ON MAGNETICS, 1998, 34 (01) :231-241
[3]   DESCRIPTION OF MAGNETIC-INTERACTIONS AND HENKEL PLOTS BY THE PREISACH HYSTERESIS MODEL [J].
BASSO, V ;
BERTOTTI, G .
IEEE TRANSACTIONS ON MAGNETICS, 1994, 30 (01) :64-72
[5]   MEASUREMENT AND PREDICTION OF DYNAMIC LOOP SHAPES AND POWER LOSSES IN SOFT-MAGNETIC MATERIALS [J].
BERTOTTI, G ;
FIORILLO, F ;
PASQUALE, M .
IEEE TRANSACTIONS ON MAGNETICS, 1993, 29 (06) :3496-3498
[6]   ANALYTICAL THEORY OF THE BEHAVIOUR OF FERROMAGNETIC MATERIALS [J].
BIORCI, G ;
PESCETTI, D .
NUOVO CIMENTO, 1958, 7 (06) :829-842
[7]   ENERGETIC MODEL OF FERROMAGNETIC HYSTERESIS [J].
HAUSER, H .
JOURNAL OF APPLIED PHYSICS, 1994, 75 (05) :2584-2596
[8]   MATHEMATICAL-THEORY AND CALCULATIONS OF MAGNETIC HYSTERESIS CURVES [J].
HODGDON, ML .
IEEE TRANSACTIONS ON MAGNETICS, 1988, 24 (06) :3120-3122
[9]  
JILES DC, 1992, IEEE T MAGN, V28, P28
[10]   HYSTERESIS MODELING .1. NONCONGRUENCY [J].
KADAR, G ;
DELLATORRE, E .
IEEE TRANSACTIONS ON MAGNETICS, 1987, 23 (05) :2820-2820