Constructing Small-Bias Sets from Algebraic-Geometric Codes

被引:16
作者
Ben-Aroya, Avraham [1 ]
Ta-Shma, Amnon [1 ]
机构
[1] Tel Aviv Univ, Blavatnik Sch Comp Sci, IL-69978 Tel Aviv, Israel
来源
2009 50TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE: FOCS 2009, PROCEEDINGS | 2009年
关键词
small-bias sets; algebraic-geometric codes;
D O I
10.1109/FOCS.2009.44
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We give an explicit construction of an epsilon-biased set over k bits of size O(k/epsilon(2) log(1/epsilon))(5/4). This improves upon previous explicit constructions when epsilon is roughly (ignoring logarithmic factors) in the range [k(-1.5), k(-0.5)]. The construction builds on an algebraic-geometric code. However, unlike previous constructions we use low-degree divisors whose degree is significantly smaller than the genus. Studying the limits of our technique, we arrive at a hypothesis that if true implies the existence of epsilon-biased sets with parameters nearly matching the lower bound, and in particular giving binary error correcting codes beating the Gilbert-Varshamov bound.
引用
收藏
页码:191 / 197
页数:7
相关论文
共 8 条
[1]   SIMPLE CONSTRUCTIONS OF ALMOST K-WISE INDEPENDENT RANDOM-VARIABLES [J].
ALON, N ;
GOLDREICH, O ;
HASTAD, J ;
PERALTA, R .
RANDOM STRUCTURES & ALGORITHMS, 1992, 3 (03) :289-304
[2]  
[Anonymous], 2002, ALGEBRA
[3]  
Fulton W., 2008, Algebraic curves
[4]  
GARCIA A, 2006, TOPICS GEOMETRY CODI
[5]   SMALL-BIAS PROBABILITY SPACES - EFFICIENT CONSTRUCTIONS AND APPLICATIONS [J].
NAOR, J ;
NAOR, M .
SIAM JOURNAL ON COMPUTING, 1993, 22 (04) :838-856
[6]  
STICHTENOTH H, 2009, COMMUNICATION
[7]  
STICHTENOTH H, 2003, ALGEBRAIC FUNCTION F
[8]  
TSFASMAN MA, 1982, MATH NACHRICHTEN, V109