Object trajectory-based activity classification and recognition using hidden Markov models

被引:172
作者
Bashir, Faisal I. [1 ]
Khokhar, Ashfaq A. [1 ]
Schonfeld, Dan [1 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Chicago, IL 60607 USA
关键词
activity recognition; Gaussian mixture models (GMMs); hidden Markov models (HMMs); trajectory modeling;
D O I
10.1109/TIP.2007.898960
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Motion trajectories provide rich spatiotemporal information about an object's activity. This paper presents novel classification algorithms for recognizing object activity using object motion trajectory. In the proposed classification system, trajectories are segmented at points of change in curvature, and the subtrajectories are represented by their principal component analysis (PCA) coefficients. We first present a framework to robustly estimate the multivariate probability density function based on PCA coefficients of the subtrajectories using Gaussian mixture models (GMMs). We show that GMM-based modeling alone cannot capture the temporal relations and ordering between underlying entities. To address this issue, we use hidden Markov models (HMMs) with a data-driven design in terms of number of states and topology (e.g., left-right versus ergodic). Experiments using a database of over 5700 complex trajectories (obtained from UCI-KDD data archives and Columbia University Multimedia Group) subdivided into 85 different classes demonstrate the superiority of our proposed HMM-based scheme using PCA coefficients of subtrajectories in comparison with other techniques in the literature.
引用
收藏
页码:1912 / 1919
页数:8
相关论文
共 48 条
[1]  
[Anonymous], UCI KDD ARCH U CALIF
[2]  
[Anonymous], 1995, International Workshop on Automatic Face and Gesture Recognition
[3]  
[Anonymous], IEEE INT C AC SPEECH
[4]  
[Anonymous], INT S APPL STOCH MOD
[5]  
BASHIR F, 2005, IEEE INT C IM PROC G
[6]  
BASHIR F, 2005, IEEE INT C MULT EXP
[7]  
BASHIR F, 2004, ACM SIGMM MULT INF R
[8]   Real-time motion trajectory-based indexing and retrieval of video sequences [J].
Bashir, Faisal I. ;
Khokhar, Ashfaq A. ;
Schonfeld, Dan .
IEEE TRANSACTIONS ON MULTIMEDIA, 2007, 9 (01) :58-65
[9]  
BETTINGER F, 2002, BRIT MACH VIS C
[10]  
BRAFFORT A, 1998, IEEE INT C INT ENG S