A Novel Cathode Material with a Concentration-Gradient for High-Energy and Safe Lithium-Ion Batteries

被引:269
作者
Sun, Yang-Kook [1 ]
Kim, Dong-Hui [1 ]
Yoon, Chong Seung [3 ]
Myung, Seung-Taek [4 ]
Prakash, Jai [5 ]
Amine, Khalil [2 ]
机构
[1] Hanyang Univ, Dept Chem Engn, Seoul 133791, South Korea
[2] Argonne Natl Lab, Electrochem Technol Program, Chem Sci & Engn Div, Argonne, IL 60439 USA
[3] Hanyang Univ, Dept Mat Sci & Engn, Seoul 133791, South Korea
[4] Iwate Univ, Dept Chem Engn, Morioka, Iwate 0208551, Japan
[5] IIT, Dept Chem & Biol Engn, Chicago, IL 60616 USA
关键词
POSITIVE ELECTRODE MATERIALS; SECONDARY BATTERIES; ELECTROCHEMICAL PROPERTIES; SIGNIFICANT IMPROVEMENT; ELEVATED-TEMPERATURE; THERMAL-BEHAVIOR; CYCLING BEHAVIOR; PERFORMANCE; COPRECIPITATION; SPINEL;
D O I
10.1002/adfm.200901730
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A high-energy functional cathode material with an average composition of Li[Ni(0.72)Co(0.18)Mn(0.10)]O(2), mainly comprising a core material Li[Ni(0.8)Co(0.2)]O(2) encapsulated completely within a stable manganese-rich concentration-gradient shell is successfully synthesized by a co-precipitation process. The Li[Ni(0.72)Co(0.18)Mn(0.10)]O(2) with a concentration-gradient shell has a shell thickness of about 1 mu m and an outer shell composition rich in manganese, Li[Ni(0.55)Co(0.15)Mn(0.30)]O(2). The core material can deliver a very high capacity of over 200 mA h g(-1), while the manganese-rich concentration-gradient shell improves the cycling and thermal stability of the material. These improvements are caused by a gradual and continuous increase of the stable tetravalent Mn in the concentration-gradient shell layer. The electrochemical and thermal properties of this cathode material are found to be far superior to those of the core Li[Ni(0.8)Co(0.2)]O(2) material alone. Electron microscopy also reveals that the original crystal structure of this material remains intact after cycling.
引用
收藏
页码:485 / 491
页数:7
相关论文
共 24 条
[1]   Surface characterization of electrodes from high power lithium-ion batteries [J].
Andersson, AM ;
Abraham, DP ;
Haasch, R ;
MacLaren, S ;
Liu, J ;
Amine, K .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (10) :A1358-A1369
[2]   Electrochemical and thermal behavior of LiNi1-zMzO2 (M = Co, Mn, Ti) [J].
Arai, H ;
Okada, S ;
Sakurai, Y ;
Yamaki, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (09) :3117-3125
[3]   Thermal behavior of Li1-yNiO2 and the decomposition mechanism [J].
Arai, H ;
Okada, S ;
Sakurai, Y ;
Yamaki, J .
SOLID STATE IONICS, 1998, 109 (3-4) :295-302
[4]   Effects of Metal Ions on the Structural and Thermal Stabilities of Li[Ni1-x-yCoxMny]O2 (x plus y≤0.5) studied by in situ high temperature XRD [J].
Bang, Hyunjoo ;
Kim, Dong-Hui ;
Bae, Young Chan ;
Prakash, Jai ;
Sun, Yang-Kook .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (12) :A952-A958
[5]   Synthesis, thermal, and electrochemical properties of AlPO4-coated LiNi0.8Co0.1Mn0.1O2 cathode materials for a Li-ion cell [J].
Cho, J ;
Kim, TJ ;
Kim, J ;
Noh, M ;
Park, B .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (11) :A1899-A1904
[6]   High-performance ZrO2-coated LiNiO2 cathode material [J].
Cho, J ;
Kim, TJ ;
Kim, YJ ;
Park, B .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2001, 4 (10) :A159-A161
[7]   Modification of LixNi1-yCoyO2 by applying a surface coating of MgO [J].
Kweon, HJ ;
Kim, SJ ;
Park, DG .
JOURNAL OF POWER SOURCES, 2000, 88 (02) :255-261
[8]  
KWEON HJ, 1998, Patent No. 0012005
[9]   Structural and electrochemical properties of layered Li[Ni1-2xCoxMnx]O2 (x=0.1-0.3) positive electrode materials for Li-ion batteries [J].
Lee, K.-S. ;
Myung, S.-T. ;
Amine, K. ;
Yashiro, H. ;
Sun, Y.-K. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (10) :A971-A977
[10]   Synthetic optimization of Li[Ni1/3Co1/3Mn1/3]O2 via co-precipitation [J].
Lee, MH ;
Kang, Y ;
Myung, ST ;
Sun, YK .
ELECTROCHIMICA ACTA, 2004, 50 (04) :939-948