Modulated amplitude waves and the transition from phase to defect chaos

被引:55
作者
Brusch, L
Zimmermann, MG
van Hecke, M
Bär, M
Torcini, A
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[2] Univ Illes Balears, CSIC, IMEDEA, E-07071 Palma de Mallorca, Spain
[3] Niels Bohr Inst, Ctr Chaos & Turbulence Studies, DK-2100 Copenhagen, Denmark
[4] Ist Nazl Fis Mat, Unita Firenze, I-50125 Florence, Italy
关键词
D O I
10.1103/PhysRevLett.85.86
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The mechanism for transitions from phase to defect chaos in the one-dimensional complex Ginzburg-Landau equation (CGLE) is presented. We describe periodic coherent structures of the CGLE, called modulated amplitude waves (MAWs). MAWs of various periods P occur in phase chaotic states. A bifurcation study of the MAWs reveals that for sufficiently large period, pairs of MAWs cease to exist via a saddle-node bifurcation. For periods beyond this bifurcation, incoherent near-MAW structures evolve towards defects. This leads to our main result: the transition from phase to defect chaos takes place when the periods of MAWs in phase chaos an driven beyond their saddle-node bifurcation.
引用
收藏
页码:86 / 89
页数:4
相关论文
共 20 条
  • [1] BAZHENOV M, 1994, PHYS LETT A, V163, P87
  • [2] Bohr T., 1998, DYNAMICAL SYSTEMS AP
  • [3] SPATIOTEMPORAL INTERMITTENCY REGIMES OF THE ONE-DIMENSIONAL COMPLEX GINZBURG-LANDAU EQUATION
    CHATE, H
    [J]. NONLINEARITY, 1994, 7 (01) : 185 - 204
  • [4] Chate H, 1995, SFI S SCI C, V21, P33
  • [5] PATTERN-FORMATION OUTSIDE OF EQUILIBRIUM
    CROSS, MC
    HOHENBERG, PC
    [J]. REVIEWS OF MODERN PHYSICS, 1993, 65 (03) : 851 - 1112
  • [6] DOEDEL EJ, 1994, AUTO 94
  • [7] CHARACTERIZATION OF THE TRANSITION FROM DEFECT TO PHASE TURBULENCE
    EGOLF, DA
    GREENSIDE, HS
    [J]. PHYSICAL REVIEW LETTERS, 1995, 74 (10) : 1751 - 1754
  • [8] THE ECKHAUS INSTABILITY FOR TRAVELING WAVES
    JANIAUD, B
    PUMIR, A
    BENSIMON, D
    CROQUETTE, V
    RICHTER, H
    KRAMER, L
    [J]. PHYSICA D, 1992, 55 (3-4): : 269 - 286
  • [9] SYMMETRY-BREAKING BIFURCATIONS IN ONE-DIMENSIONAL EXCITABLE MEDIA
    KNESS, M
    TUCKERMAN, LS
    BARKLEY, D
    [J]. PHYSICAL REVIEW A, 1992, 46 (08): : 5054 - 5062
  • [10] Wound-up phase turbulence in the complex Ginzburg-Landau equation
    Montagne, R
    HernandezGarcia, E
    Amengual, A
    SanMiguel, M
    [J]. PHYSICAL REVIEW E, 1997, 56 (01) : 151 - 167