Heparan sulphate N-sulphotransferase activity: reaction mechanism and substrate recognition

被引:18
作者
Kakuta, Y
Li, L
Pedersen, LC
Pedersen, LG
Negishi, M
机构
[1] NIEHS, Pharm Sect, Reprod & Dev Toxicol Lab, NIH, Res Triangle Pk, NC 27709 USA
[2] NIEHS, Struct Biol Lab, NIH, Res Triangle Pk, NC 27709 USA
关键词
acceptor substrate binding; catalytic mechanism; glycosaminylglycan; heparan sulphate N-sulphotransferase; molecular modelling; X-ray crystal structure;
D O I
10.1042/BST0310331
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Human heparan sulphate N-deacetylase/N-sulphotransferase 1 sulphates the NH3+ group of the glucosamine moiety of the heparan chain in heparan sulphate/heparin biosynthesis. An open cleft that runs perpendicular to the sulphate donor 3'-phosphoadenosine 5'-phosphosulphate may constitute the acceptor substrate-binding site of the sulphotransferase domain (hNST1) [Kakuta, Sueyoshi, Negishi and Pedersen (1999) J. Biol. Chem. 274, 10673-10676]. When a hexasaccharide model chain is docked into the active site, only a trisaccharide (-IdoA-GlcN-IdoA-) portion interacts directly with the cleft residues: Trp-713, His-716 and His-720 from alpha helix 6, and Phe-640, Glu-641, Glu-642, Gin-644 and Asn-647 from random coil (residues 640-647). Mutation of these residues either abolishes or greatly reduces hNST1 activity. Glu-642 may play the critical role of catalytic base in the sulphuryl group transfer reaction, as indicated by its hydrogen-bonding distance to the NH3+ group of the glucosamine moiety in the model and by mutational data.
引用
收藏
页码:331 / 334
页数:4
相关论文
共 17 条
[1]   Crystal structure of human catecholamine sulfotransferase [J].
Bidwell, LM ;
McManus, ME ;
Gaedigk, A ;
Kakuta, Y ;
Negishi, M ;
Pedersen, L ;
Martin, JL .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 293 (03) :521-530
[2]   X-ray crystal structure of human dopamine sulfotransferase, SULT1A3 - Molecular modeling and quantitative structure-activity relationship analysis demonstrate a molecular basis for sulfotransferase substrate specificity [J].
Dajani, R ;
Cleasby, A ;
Neu, M ;
Wonacott, AJ ;
Jhoti, H ;
Hood, AM ;
Modi, S ;
Hersey, A ;
Taskinen, J ;
Cooke, RM ;
Manchee, GR ;
Coughtrie, MWH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (53) :37862-37868
[3]   The anticoagulant activation of antithrombin by heparin [J].
Jin, L ;
Abrahams, JP ;
Skinner, R ;
Petitou, M ;
Pike, RN ;
Carrell, RW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (26) :14683-14688
[4]   Crystal structure of the sulfotransferase domain of human heparan sulfate N-deacetylase/N-sulfotransferase 1 [J].
Kakuta, Y ;
Sueyoshi, T ;
Negishi, M ;
Pedersen, LC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (16) :10673-10676
[5]   Conserved structural motifs in the sulfotransferase family [J].
Kakuta, Y ;
Pedersen, LG ;
Pedersen, LC ;
Niegishi, M .
TRENDS IN BIOCHEMICAL SCIENCES, 1998, 23 (04) :129-130
[6]   Crystal structure of estrogen sulphotransferase [J].
Kakuta, Y ;
Pedersen, LG ;
Carter, CW ;
Negishi, M ;
Pedersen, LC .
NATURE STRUCTURAL BIOLOGY, 1997, 4 (11) :904-908
[7]   The sulfuryl transfer mechanism - Crystal structure of a vanadate complex of estrogen sulfotransferase and mutational analysis [J].
Kakuta, Y ;
Petrotchenko, EV ;
Pedersen, LC ;
Negishi, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (42) :27325-27330
[8]   MOLSCRIPT - A PROGRAM TO PRODUCE BOTH DETAILED AND SCHEMATIC PLOTS OF PROTEIN STRUCTURES [J].
KRAULIS, PJ .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1991, 24 :946-950
[9]   Refinement of the NMR solution structure of the gamma-carboxyglutamic acid domain of coagulation factor IX using molecular dynamics simulation with initial Ca2+ positions determined by a genetic algorithm [J].
Li, LP ;
Darden, TA ;
Freedman, SJ ;
Furie, BC ;
Furie, B ;
Baleja, JD ;
Smith, H ;
Hiskey, RG ;
Pedersen, LG .
BIOCHEMISTRY, 1997, 36 (08) :2132-2138
[10]   Regulated diversity of heparan sulfate [J].
Lindahl, U ;
Kusche-Gullberg, M ;
Kjellén, L .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (39) :24979-24982