Unwrapping glial biology: Gcm target genes regulating glial development, diversification, and function

被引:305
作者
Freeman, MR [1 ]
Delrow, J
Kim, J
Johnson, E
Doe, CQ
机构
[1] Univ Oregon, Inst Neurosci & Mol Biol, Eugene, OR 97403 USA
[2] Univ Oregon, Howard Hughes Med Inst, Eugene, OR 97403 USA
[3] Univ Oregon, Inst Mol Biol, Eugene, OR 97403 USA
[4] Fred Hutchinson Canc Res Ctr, Seattle, WA 98109 USA
[5] Univ Penn, Dept Biol, Philadelphia, PA 19104 USA
关键词
D O I
10.1016/S0896-6273(03)00289-7
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Glia are the most abundant cell type in the mammalian brain. They regulate neuronal development and function, CNS immune surveillance, and stem cell biology, yet we know surprisingly little about glia in any organism. Here we identify over 40 new Drosophila glial genes. We use glial cells missing (gcm) mutants and misexpression to verify they are Gcm regulated in vivo. Many genes show unique spatiotemporal responsiveness to Gcm in the CNS, and thus glial subtype diversification requires spatially or temporally restricted Gcm cofactors. These genes provide insights into glial biology: we show unc-5 (a repulsive netrin receptor) orients glial migrations and the draper gene mediates glial engulfment of apoptotic neurons and larval locomotion. Many identified Drosophila glial genes have homologs expressed in mammalian glia, revealing conserved molecular features of glial cells. 80% of these Drosophila glial genes have mammalian homologs; these are now excellent candidates for regulating human glial development, function, or disease.
引用
收藏
页码:567 / 580
页数:14
相关论文
共 65 条
  • [1] gcm2 promotes glial cell differentiation and is required with glial cells missing for macrophage development in Drosophila
    Alfonso, TB
    Jones, BW
    [J]. DEVELOPMENTAL BIOLOGY, 2002, 248 (02) : 369 - 383
  • [2] GLIOTACTIN, A NOVEL TRANSMEMBRANE PROTEIN ON PERIPHERAL GLIA, IS REQUIRED TO FORM THE BLOOD-NERVE BARRIER IN DROSOPHILA
    AULD, VJ
    FETTER, RD
    BROADIE, K
    GOODMAN, CS
    [J]. CELL, 1995, 81 (05) : 757 - 767
  • [3] Axonal control of oligodendrocyte development
    Barres, BA
    Raff, MC
    [J]. JOURNAL OF CELL BIOLOGY, 1999, 147 (06) : 1123 - 1128
  • [4] BASTIANI MJ, 1986, J NEUROSCI, V6, P3542
  • [5] Biology of oligodendrocyte and myelin in the mammalian central nervous system
    Baumann, N
    Pham-Dinh, D
    [J]. PHYSIOLOGICAL REVIEWS, 2001, 81 (02) : 871 - 927
  • [6] A Drosophila neurexin is required for septate junction and blood-nerve barrier formation and function
    Baumgartner, S
    Littleton, JT
    Broadie, K
    Bhat, MA
    Harbecke, R
    Lengyel, JA
    ChiquetEhrismann, R
    Prokop, A
    Bellen, HJ
    [J]. CELL, 1996, 87 (06) : 1059 - 1068
  • [7] Exploiting transcription factor binding site clustering to identify cis-regulatory modules involved in pattern formation in the Drosophila genome
    Berman, BP
    Nibu, Y
    Pfeiffer, BD
    Tomancak, P
    Celniker, SE
    Levine, M
    Rubin, GM
    Eisen, MB
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (02) : 757 - 762
  • [8] Bernardoni R, 1997, DEV BIOL, V191, P118
  • [9] Booth GE, 2000, DEVELOPMENT, V127, P237
  • [10] The embryonic central nervous system lineages of Drosophila melanogaster .1. Neuroblast lineages derived from the ventral half of the neuroectoderm
    Bossing, T
    Udolph, G
    Doe, CQ
    Technau, GM
    [J]. DEVELOPMENTAL BIOLOGY, 1996, 179 (01) : 41 - 64