Boosting nested cascade detector for multi-view face detection

被引:40
作者
Huang, C [1 ]
Al, HZ [1 ]
Wu, B [1 ]
Lao, SH [1 ]
机构
[1] Tsing Hua Univ, Comp Sci & Technol Dept, Beijing 100084, Peoples R China
来源
PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 2 | 2004年
关键词
D O I
10.1109/ICPR.2004.1334239
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a novel nested cascade detector for multi-view face detection is presented. This nested cascade is learned by Schapire and Singer's improved boosting algorithms that use real-valued confidence-rated weak classifiers [1], where we use confidence-rated Look-Up-Table (LUT) weak classifiers based on Haar features. Experiments show the system performance is significantly improved compared with previous methods.
引用
收藏
页码:415 / 418
页数:4
相关论文
共 7 条
[1]  
[Anonymous], 13 INT C MACH LEARN
[2]  
[Anonymous], 2001, P 2001 IEEE COMP SOC
[3]  
LAO SH, ICCV2003
[4]  
LI SZ, 2002, STAT LEARNING MULTI
[5]   Improved boosting algorithms using confidence-rated predictions [J].
Schapire, RE ;
Singer, Y .
MACHINE LEARNING, 1999, 37 (03) :297-336
[6]  
SCHNEIDERMAN H, 2000, STAT METHOD 3D OBJEC
[7]  
THEODORIDIS S, 2003, PATTERN RECOGN, P177