Heat capacities and a snapshot of the energy landscape in protein GB1 from the pre-denaturation temperature dependence of backbone NH nanosecond fluctuations

被引:33
作者
Idiyatullin, D [1 ]
Nesmelova, I [1 ]
Daragan, VA [1 ]
Mayo, KH [1 ]
机构
[1] Univ Minnesota, Dept Biochem Mol Biol & Biophys, Minneapolis, MN 55455 USA
关键词
NMR; N-15; relaxation; spectral density; correlation times; motional models;
D O I
10.1016/S0022-2836(02)01155-5
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Protein stability is usually characterized calorimetrically by a melting temperature and related thermodynamic parameters. Despite its importance, the microscopic origin of the melting transition and the relationship between thermodynamic stability and dynamics remains a mystery. Here, NMR relaxation parameters were acquired for backbone (NH)-N-15 groups of the 56 residue immunoglobulin-binding domain of streptococcal protein G over a pre-denaturation temperature range of 5-50 degreesC. Relaxation data were analyzed using three methods: the standard three-Lorentzian model free approach; the F(omega) = 2omega/(omega) spectral density approach that yields motional correlation time distributions, and a new approach that determines frequency-dependent order parameters. Regardless of the method of analysis, the temperature dependence of internal motional correlation times and order parameters is essentially the same. Nanosecond time-scale internal motions are found for all NHs in the protein, and their temperature dependence yields activation energies ranging up to about 33 kJ/mol residue. NH motional barrier heights are structurally correlated, with the largest energy barriers being found for residues in the most "rigid" segments of the fold: beta-strands 1 and 4 and the alpha-helix. Trends in this landscape also parallel the free energy of folding-unfolding derived from hydrogen-deuterium (H-D) exchange measurements, indicating that the energetics for internal motions occurring on the nanosecond time-scale mirror those occurring on the much slower time-scale of H-D exchange. Residual heat capacities, derived from the temperature dependence of order parameters, range from near zero to near 100 J/mol K residue and correlate with this energy landscape. These results provide a unique picture of this protein's energy landscape and a relationship between thermodynamic stability and dynamics that suggests thermosensitive regions in the fold that could initiate the melting process. (C) 2002 Elsevier Science Ltd. All rights reserved
引用
收藏
页码:149 / 162
页数:14
相关论文
共 55 条
[1]  
AKERSTROM B, 1985, J IMMUNOL, V135, P2589
[2]   NMR ORDER PARAMETERS AND FREE-ENERGY - AN ANALYTICAL APPROACH AND ITS APPLICATION TO COOPERATIVE CA2+ BINDING BY CALBINDIN-D(9K) [J].
AKKE, M ;
BRUSCHWEILER, R ;
PALMER, AG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1993, 115 (21) :9832-9833
[3]   THERMODYNAMIC ANALYSIS OF THE FOLDING OF THE STREPTOCOCCAL PROTEIN-G IGG-BINDING DOMAINS B1 AND B2 - WHY SMALL PROTEINS TEND TO HAVE HIGH DENATURATION TEMPERATURES [J].
ALEXANDER, P ;
FAHNESTOCK, S ;
LEE, T ;
ORBAN, J ;
BRYAN, P .
BIOCHEMISTRY, 1992, 31 (14) :3597-3603
[4]   Estimation of dynamic parameters from NMR relaxation data using the Lipari-Szabo model-free approach and Bayesian statistical methods [J].
Andrec, M ;
Montelione, GT ;
Levy, RM .
JOURNAL OF MAGNETIC RESONANCE, 1999, 139 (02) :408-421
[5]   Analysis of slow interdomain motion of macromolecules using NMR relaxation data [J].
Baber, JL ;
Szabo, A ;
Tjandra, N .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (17) :3953-3959
[6]  
BARCHI JJ, 1994, PROTEIN SCI, V3, P15
[7]   The three-dimensional solution structure and dynamic properties of the human FADD death domain [J].
Berglund, H ;
Olerenshaw, D ;
Sankar, A ;
Federwisch, M ;
McDonald, NQ ;
Driscoll, PC .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 302 (01) :171-188
[8]   A comprehensive analysis of multifield 15N relaxation parameters in proteins:: Determination of 15N chemical shift anisotropies [J].
Canet, D ;
Barthe, P ;
Mutzenhardt, P ;
Roumestand, C .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (19) :4567-4576
[9]  
Chan HS, 1998, PROTEINS, V30, P2, DOI 10.1002/(SICI)1097-0134(19980101)30:1<2::AID-PROT2>3.0.CO
[10]  
2-R