Retinoic acid regulation of Cdx1: an indirect mechanism for retinoids and vertebral specification

被引:84
作者
Houle, M
Prinos, P
Iulianella, A
Bouchard, N
Lohnes, D
机构
[1] Inst Rech Clin Montreal, Montreal, PQ H2W 1R7, Canada
[2] Univ Montreal, Dept Mol Biol, Montreal, PQ H2W 1R7, Canada
[3] McGill Univ, Div Expt Med, Montreal, PQ H2W 1R7, Canada
关键词
D O I
10.1128/MCB.20.17.6579-6586.2000
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Retinoic acid (RA) is required for diverse developmental programs, including vertebral specification. Both RA receptor disruption and excess RA result in homeotic transformations of the axial skeleton. These effects are believed to occur through altered expression of Hox genes, several of which have been demonstrated to be direct RA targets. Members of the cdx (caudal) homeobox gene family are also implicated in regulating Hox expression. Disruption of cdx1 results in vertebral homeotic transformations and alteration of Hox expression boundaries; similar homeosis is also observed in cdx2 heterozygotes, In Xenopus, gain or loss of Cdx function affects vertebral morphogenesis through a mechanism that also correlates with altered Hox expression. Taken together with the finding of putative Cdx binding motifs in several Hox promoters, these data strongly support a role for Cdx members in direct regulation of expression of at least some Hox genes. Most retinoid-responsive Hox genes have not been demonstrated to be direct RA targets, suggesting that intermediaries are involved. Based on these findings, we hypothesized that one or more cdx members may transduce the effects of RA on Hox transcription. Consistent,vith this, we present evidence that cdx1 is a direct RA target gene, suggesting an additional pathway for retinoid-dependent vertebral specification.
引用
收藏
页码:6579 / 6586
页数:8
相关论文
共 52 条
[1]   Mouse P450RAI (CYP26) expression and retinoic acid-inducible retinoic acid metabolism in F9 cells are regulated by retinoic acid receptor γ and retinoid X receptor α [J].
Abu-Abed, SS ;
Beckett, BR ;
Chiba, H ;
Chithalen, JV ;
Jones, G ;
Metzger, D ;
Chambon, P ;
Petkovich, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (04) :2409-2415
[2]   RETINOIC ACID RECEPTORS AND RETINOID X-RECEPTORS - INTERACTIONS WITH ENDOGENOUS RETINOIC ACIDS [J].
ALLENBY, G ;
BOCQUEL, MT ;
SAUNDERS, M ;
KAZMER, S ;
SPECK, J ;
ROSENBERGER, M ;
LOVEY, A ;
KASTNER, P ;
GRIPPO, JF ;
CHAMBON, P ;
LEVIN, AA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (01) :30-34
[3]  
[Anonymous], 1994, MANIPULATING MOUSE E
[4]  
Ausubel F.M., 1988, CURRENT PROTOCOLS MO
[5]   TRANSGENIC INDICATOR MICE FOR STUDYING ACTIVATED RETINOIC ACID RECEPTORS DURING DEVELOPMENT [J].
BALKAN, W ;
COLBERT, M ;
BOCK, C ;
LINNEY, E .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (08) :3347-3351
[6]   EXPRESSION OF CDX-2 IN THE MOUSE EMBRYO AND PLACENTA - POSSIBLE ROLE IN PATTERNING OF THE EXTRAEMBRYONIC MEMBRANES [J].
BECK, F ;
ERLER, T ;
RUSSELL, A ;
JAMES, R .
DEVELOPMENTAL DYNAMICS, 1995, 204 (03) :219-227
[7]   A decade of molecular biology of retinoic acid receptors [J].
Chambon, P .
FASEB JOURNAL, 1996, 10 (09) :940-954
[8]  
Charité J, 1998, DEVELOPMENT, V125, P4349
[9]   Homeosis and intestinal tumours in Cdx2 mutant mice [J].
Chawengsaksophak, K ;
James, R ;
Hammond, VE ;
Kontgen, F ;
Beck, F .
NATURE, 1997, 386 (6620) :84-87
[10]   DIFFERENTIAL ACTIVATION OF XENOPUS HOMEO BOX GENES BY MESODERM-INDUCING GROWTH-FACTORS AND RETINOIC ACID [J].
CHO, KWY ;
DEROBERTIS, EM .
GENES & DEVELOPMENT, 1990, 4 (11) :1910-1916