Electron transfer and catalytic activity of nitric oxide synthases - Chimeric constructs of the neuronal, inducible, and endothelial isoforms

被引:91
作者
Nishida, CR [1 ]
de Montellano, PRO [1 ]
机构
[1] Univ Calif San Francisco, Sch Pharm, Dept Pharmaceut Chem, San Francisco, CA 94143 USA
关键词
D O I
10.1074/jbc.273.10.5566
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The nitric oxide synthases (NOS) are single polypeptides that encode a heme domain, a calmodulin binding motif, and a flavoprotein domain with sequence similarity to P450 reductase. Despite this basic structural similarity, the three major NOS isoforms differ significantly in their rates of . NO synthesis, cytochrome c reduction, and NADPH utilization and in the Ca2+ dependence of these rates. To assign the origin of these differences to specific protein domains, we constructed chimeras in which the reductase domains of endothelial and inducible NOS, respectively, were replaced by the reductase domain of neuronal NOS. The results with the chimeric proteins confirm the modular organization of the NOS polypeptide chain and demonstrate that (a) similar residues establish the necessary contacts between the reductase and heme domains in the three NOS isoforms, (b) the maximal rate of . NO synthesis is determined by the maximum intrinsic ability of the reductase domain to deliver electrons to the heme domain, (c) the Ca2+ independence of inducible NOS requires interactions of calmodulin with both the calmodulin binding motif and the flavoprotein domain, and (d) the effects of tetrahydrobiopterin and L-arginine arm electron transfer rates are mediated exclusively by heme domain interactions.
引用
收藏
页码:5566 / 5571
页数:6
相关论文
共 48 条
[1]   SUBUNIT DISSOCIATION AND UNFOLDING OF MACROPHAGE NO SYNTHASE - RELATIONSHIP BETWEEN ENZYME STRUCTURE, PROSTHETIC GROUP BINDING, AND CATALYTIC FUNCTION [J].
ABUSOUD, HM ;
LOFTUS, M ;
STUEHR, DJ .
BIOCHEMISTRY, 1995, 34 (35) :11167-11175
[2]  
ABUSOUD HM, 1994, J BIOL CHEM, V269, P32318
[3]  
BAEK KJ, 1993, J BIOL CHEM, V268, P21120
[4]   ISOLATION OF NITRIC-OXIDE SYNTHETASE, A CALMODULIN-REQUIRING ENZYME [J].
BREDT, DS ;
SNYDER, SH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (02) :682-685
[5]   NITRIC-OXIDE - A PHYSIOLOGICAL MESSENGER MOLECULE [J].
BREDT, DS ;
SNYDER, SH .
ANNUAL REVIEW OF BIOCHEMISTRY, 1994, 63 :175-195
[6]   CLONED AND EXPRESSED NITRIC-OXIDE SYNTHASE STRUCTURALLY RESEMBLES CYTOCHROME-P-450 REDUCTASE [J].
BREDT, DS ;
HWANG, PM ;
GLATT, CE ;
LOWENSTEIN, C ;
REED, RR ;
SNYDER, SH .
NATURE, 1991, 351 (6329) :714-718
[7]   NITRIC-OXIDE SYNTHASE COMPLEXED WITH DYSTROPHIN AND ABSENT FROM SKELETAL-MUSCLE SARCOLEMMA IN DUCHENNE MUSCULAR-DYSTROPHY [J].
BRENMAN, JE ;
CHAO, DS ;
XIA, HH ;
ALDAPE, K ;
BREDT, DS .
CELL, 1995, 82 (05) :743-752
[8]   CALCIUM-DEPENDENT NITRIC-OXIDE SYNTHESIS IN ENDOTHELIAL CYTOSOL IS MEDIATED BY CALMODULIN [J].
BUSSE, R ;
MULSCH, A .
FEBS LETTERS, 1990, 265 (1-2) :133-136
[9]   Endothelial nitric-oxide synthase - Evidence for bidomain structure and successful reconstitution of catalytic activity from two separate domains generated by a baculovirus expression system [J].
Chen, PF ;
Tsai, AL ;
Berka, V ;
Wu, KK .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (24) :14631-14635
[10]   CALMODULIN IS A SUBUNIT OF NITRIC-OXIDE SYNTHASE FROM MACROPHAGES [J].
CHO, HJ ;
XIE, QW ;
CALAYCAY, J ;
MUMFORD, RA ;
SWIDEREK, KM ;
LEE, TD ;
NATHAN, C .
JOURNAL OF EXPERIMENTAL MEDICINE, 1992, 176 (02) :599-604