Quantum critical scaling of fidelity susceptibility

被引:162
作者
Albuquerque, A. Fabricio [1 ]
Alet, Fabien
Sire, Clement
Capponi, Sylvain
机构
[1] Univ Toulouse UPS, IRSAMC, Phys Theor Lab, F-31062 Toulouse, France
关键词
TEMPERATURE SERIES EXPANSIONS; ISING-MODEL;
D O I
10.1103/PhysRevB.81.064418
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The behavior of the ground-state fidelity susceptibility in the vicinity of a quantum critical point is investigated. We derive scaling relations describing its singular behavior in the quantum critical regime. Unlike in previous studies, these relations are solely expressed in terms of conventional critical exponents. We also describe in detail a quantum Monte Carlo scheme that allows for the evaluation of the fidelity susceptibility for a large class of many-body systems and apply it in the study of the quantum phase transition for the transverse-field Ising model on the square lattice. Finite-size analysis applied to the so-obtained numerical results confirms the validity of our scaling relations. Furthermore, we analyze the properties of a closely related quantity, the ground-state energy's second derivative, which can be numerically evaluated in a particularly efficient way. The usefulness of both quantities as alternative indicators of quantum criticality is examined.
引用
收藏
页数:12
相关论文
共 38 条
[1]   The ALPS project release 1.3:: Open-source software for strongly correlated systems [J].
Albuquerque, A. F. ;
Alet, F. ;
Corboz, P. ;
Dayal, P. ;
Feiguin, A. ;
Fuchs, S. ;
Gamper, L. ;
Gull, E. ;
Guertler, S. ;
Honecker, A. ;
Igarashi, R. ;
Koerner, M. ;
Kozhevnikov, A. ;
Laeuchli, A. ;
Manmana, S. R. ;
Matsumoto, M. ;
McCulloch, I. P. ;
Michel, F. ;
Noack, R. M. ;
Pawlowski, G. ;
Pollet, L. ;
Pruschke, T. ;
Schollwoeck, U. ;
Todo, S. ;
Trebst, S. ;
Troyer, M. ;
Werner, P. ;
Wessel, S. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 310 (02) :1187-1193
[2]   Generalized directed loop method for quantum Monte Carlo simulations [J].
Alet, F ;
Wessel, S ;
Troyer, M .
PHYSICAL REVIEW E, 2005, 71 (03)
[3]   Entanglement in many-body systems [J].
Amico, Luigi ;
Fazio, Rosario ;
Osterloh, Andreas ;
Vedral, Vlatko .
REVIEWS OF MODERN PHYSICS, 2008, 80 (02) :517-576
[4]  
BARANKOV R, ARXIV09100255
[5]   Cluster Monte Carlo simulation of the transverse Ising model -: art. no. 066110 [J].
Blöte, HWJ ;
Deng, YJ .
PHYSICAL REVIEW E, 2002, 66 (06) :8
[6]   ISING UNIVERSALITY IN 3 DIMENSIONS - A MONTE-CARLO STUDY [J].
BLOTE, HWJ ;
LUIJTEN, E ;
HERINGA, JR .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (22) :6289-6313
[7]   Intrinsic relation between ground-state fidelity and the characterization of a quantum phase transition [J].
Chen, Shu ;
Wang, Li ;
Hao, Yajiang ;
Wang, Yupeng .
PHYSICAL REVIEW A, 2008, 77 (03)
[8]  
Continentino MA, 2001, QUANTUM SCALING MANY
[9]   Quench dynamics near a quantum critical point [J].
De Grandi, C. ;
Gritsev, V. ;
Polkovnikov, A. .
PHYSICAL REVIEW B, 2010, 81 (01)
[10]   Critical behavior of the two-dimensional Ising model in a transverse field: A density-matrix renormalization calculation [J].
de Jongh, MSLD ;
van Leeuwen, JMJ .
PHYSICAL REVIEW B, 1998, 57 (14) :8494-8500