LOCAL TIME STEPPING APPLIED TO IMPLICIT-EXPLICIT METHODS FOR HYPERBOLIC SYSTEMS

被引:16
作者
Coquel, Frederic [1 ,2 ]
Nguyen, Quang Long [3 ]
Postel, Marie [1 ,2 ]
Tran, Quang Huy [3 ]
机构
[1] Univ Paris 06, UMR LJLL 7598, F-75005 Paris, France
[2] CNRS, UMR LJLL 7598, F-75005 Paris, France
[3] IFP, Dept Math Appl, F-92852 Rueil Malmaison, France
关键词
hyperbolic systems of conservation laws; time-varying adaptive grid; local time stepping; implicit-explicit schemes; ADAPTIVE MESH REFINEMENT; MODELING 2-PHASE FLOW; CONSERVATION-LAWS; VARYING TIME; SCHEME;
D O I
10.1137/070708500
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the context of systems of nonlinear conservation laws it can be crucial to use adaptive grids in order to correctly simulate the singularities of the solution over long time ranges while keeping the computing time within acceptable bounds. The adaptive space grid must vary in time according to the local smoothness of the solution. More sophisticated and recent methods also adapt the time-step locally to the space discretization according to the stability condition. We present here such a method designed for an explicit-implicit Lagrange-projection scheme, addressing physical problems where slow kinematic waves coexist with fast acoustic ones. Numerical simulations are presented to validate the algorithms in terms of robustness and efficiency.
引用
收藏
页码:540 / 570
页数:31
相关论文
共 27 条
[1]   A relaxation multiresolution scheme for accelerating realistic two-phase flows calculations in pipelines [J].
Andrianov, N. ;
Coquel, F. ;
Postel, M. ;
Tran, Q. H. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2007, 54 (02) :207-236
[2]   A semi-implicit relaxation scheme for modeling two-phase flow in a pipeline [J].
Baudin, M ;
Coquel, F ;
Tran, QH .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 27 (03) :914-936
[3]   LOCAL ADAPTIVE MESH REFINEMENT FOR SHOCK HYDRODYNAMICS [J].
BERGER, MJ ;
COLELLA, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 82 (01) :64-84
[4]   ADAPTIVE MESH REFINEMENT FOR HYPERBOLIC PARTIAL-DIFFERENTIAL EQUATIONS [J].
BERGER, MJ ;
OLIGER, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 1984, 53 (03) :484-512
[5]  
Cohen A, 2003, MATH COMPUT, V72, P183, DOI 10.1090/S0025-5718-01-01391-6
[6]  
COHEN A, 2003, STUD MATH APPL, V32
[7]   AN IMPLICIT EXPLICIT EULERIAN GODUNOV SCHEME FOR COMPRESSIBLE FLOW [J].
COLLINS, JP ;
COLELLA, P ;
GLAZ, HM .
JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 116 (02) :195-211
[8]   Large time step positivity-preserving method for multiphase flows [J].
Coquel, F. ;
Nguyen, Q. -L. ;
Postel, M. ;
Tran, Q. -H. .
HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS: PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON HYPERBOLIC PROBLEMS, 2008, :849-856
[9]  
Coquel F., 2006, Journal of Numerical Mathematics, V14, P187, DOI 10.1163/156939506778658294
[10]  
COQUEL F, 2008, P 7 EUR C NUM METH A, P257