Robust chaos

被引:226
作者
Banerjee, S [1 ]
Yorke, JA
Grebogi, C
机构
[1] Indian Inst Technol, Dept Elect Engn, Kharagpur 721302, W Bengal, India
[2] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
[3] Univ Maryland, Inst Plasma Res, College Pk, MD 20742 USA
[4] Univ Maryland, Dept Math, College Pk, MD 20742 USA
关键词
D O I
10.1103/PhysRevLett.80.3049
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Practical applications of chaos require the chaotic orbit to be robust, defined by the absence of periodic windows and coexisting attractors in some neighborhood of the parameter space. We show that robust chaos can occur in piecewise smooth systems and obtain the conditions of its occurrence. We illustrate this phenomenon with a practical example from electrical engineering.
引用
收藏
页码:3049 / 3052
页数:4
相关论文
共 10 条
[1]  
Alligood K.T., 1996, Chaos: An Introduction to Dynamical Systems, DOI [10.1007/0-387-22492-0_3, DOI 10.1007/0-387-22492-0_3]
[2]   Improvement of power supply EMC by chaos [J].
Deane, JHB ;
Hamill, DC .
ELECTRONICS LETTERS, 1996, 32 (12) :1045-1045
[3]   Generic hyperbolicity in the logistic family [J].
Graczyk, J ;
Swiatek, G .
ANNALS OF MATHEMATICS, 1997, 146 (01) :1-52
[4]   COMMUNICATING WITH CHAOS [J].
HAYES, S ;
GREBOGI, C ;
OTT, E .
PHYSICAL REVIEW LETTERS, 1993, 70 (20) :3031-3034
[5]  
ISABELLE SH, IN PRESS IEEE T CIRC
[6]  
MAISTRENKO YL, 1993, INT J BIFURCAT CHAOS, V3, P1573
[7]   BORDER-COLLISION BIFURCATIONS INCLUDING PERIOD 2 TO PERIOD 3 FOR PIECEWISE SMOOTH SYSTEMS [J].
NUSSE, HE ;
YORKE, JA .
PHYSICA D-NONLINEAR PHENOMENA, 1992, 57 (1-2) :39-57
[8]   BORDER-COLLISION BIFURCATIONS FOR PIECEWISE-SMOOTH ONE-DIMENSIONAL MAPS [J].
NUSSE, HE ;
YORKE, JA .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1995, 5 (01) :189-207
[9]   BORDER-COLLISION BIFURCATIONS - AN EXPLANATION FOR OBSERVED BIFURCATION PHENOMENA [J].
NUSSE, HE ;
OTT, E ;
YORKE, JA .
PHYSICAL REVIEW E, 1994, 49 (02) :1073-1076
[10]  
Ottino J. M., 1989, KINEMATICS MIXING ST