Identification and characterization of a new class of trafficking motifs for controlling clathrin-independent internalization and recycling

被引:40
作者
Gong, Qiang
Weide, Michael
Huntsman, Christopher
Xu, Zhuojin
Jan, Lily Y.
Ma, Dzwokai [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Mol Cellular & Dev Biol, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Neurosci Res Inst, Santa Barbara, CA 93106 USA
[3] Univ Calif San Francisco, Howard Hughes Med Inst, Dept Physiol, San Francisco, CA 94143 USA
关键词
D O I
10.1074/jbc.M700767200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Plasma membrane proteins such as receptors and ion channels allow a cell to communicate with its environment and regulate many intracellular activities. Thus, the proper control of the surface number of these proteins is essential for maintaining the structural and functional homeostasis of a cell. Internalization and recycling plays a key role in determining the surface density of receptors and channels. Whereas the clathrin-mediated internalization and its associated recycling have been the focus of research in this field, recent studies have revealed that an increasing number of receptors and channels enter a cell via clathrin-independent pathways. However, little is known about the trafficking motifs involved in controlling clathrin-independent internalization and various associated recycling pathways. By using a potassium channel as a model system, we identified a class of trafficking motifs that function along a clathrin-independent pathway to increase the surface density of a membrane protein by preventing its rapid internalization and/or facilitating its recycling via the ADP-ribosylation factor 6-dependent recycling pathway. Moreover our data suggest that these motifs may enhance the association of membrane proteins with the EFA6 family of guanine nucleotide exchange factors for ADP-ribosylation factor
引用
收藏
页码:13087 / 13097
页数:11
相关论文
共 42 条
[1]  
Benmerah A, 1999, J CELL SCI, V112, P1303
[2]   Phosphatidylinositol 4,5-bisphosphate and Arf6-regulated membrane traffic [J].
Brown, FD ;
Rozelle, AL ;
Yin, HL ;
Balla, T ;
Donaldson, JG .
JOURNAL OF CELL BIOLOGY, 2001, 154 (05) :1007-1017
[3]   THE SMALL GTPASE RAB5 FUNCTIONS AS A REGULATORY FACTOR IN THE EARLY ENDOCYTIC PATHWAY [J].
BUCCI, C ;
PARTON, RG ;
MATHER, IH ;
STUNNENBERG, H ;
SIMONS, K ;
HOFLACK, B ;
ZERIAL, M .
CELL, 1992, 70 (05) :715-728
[4]   A tubular EHD1-containing compartment involved in the recycling of major histocompatibility complex class I molecules to the plasma membrane [J].
Caplan, S ;
Naslavsky, N ;
Hartnell, LM ;
Lodge, R ;
Polishchuk, RS ;
Donaldson, JG ;
Bonifacino, JS .
EMBO JOURNAL, 2002, 21 (11) :2557-2567
[5]   Phagocytosis and macropinocytosis in Dictyostelium:: Phosphoinositide-based processes, biochemically distinct [J].
Cardelli, J .
TRAFFIC, 2001, 2 (05) :311-320
[6]   HL-1 cells: A cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte [J].
Claycomb, WC ;
Lanson, NA ;
Stallworth, BS ;
Egeland, DB ;
Delcarpio, JB ;
Bahinski, A ;
Izzo, NJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (06) :2979-2984
[7]   PACS-1 binding to adaptors is required for acidic cluster motif-mediated protein traffic [J].
Crump, CM ;
Xiang, Y ;
Thomas, L ;
Gu, F ;
Austin, C ;
Tooze, SA ;
Thomas, G .
EMBO JOURNAL, 2001, 20 (09) :2191-2201
[8]   CLATHRIN-INDEPENDENT PINOCYTOSIS IS INDUCED IN CELLS OVEREXPRESSING A TEMPERATURE-SENSITIVE MUTANT OF DYNAMIN [J].
DAMKE, H ;
BABA, T ;
VANDERBLIEK, AM ;
SCHMID, SL .
JOURNAL OF CELL BIOLOGY, 1995, 131 (01) :69-80
[9]   ARF6-dependent interaction of the TWIK1 K+ channel with EFA6, a GDP/GTP exchange factor for ARF6 [J].
Decressac, S ;
Franco, M ;
Bendahhou, S ;
Warth, R ;
Knauer, S ;
Barhanin, J ;
Lazdunski, M ;
Lesage, F .
EMBO REPORTS, 2004, 5 (12) :1171-1175
[10]   Transfer of M2 muscarinic acetylcholine receptors to clathrin-derived early endosomes following clathrin-independent endocytosis [J].
Delaney, KA ;
Murph, MM ;
Brown, LM ;
Radhakrishna, H .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (36) :33439-33446