Applications of the Dulmage-Mendelsohn decomposition and network flow to graph bisection improvement

被引:10
作者
Ashcraft, C
Liu, JWH
机构
[1] Boeing Informat & Support Serv, Seattle, WA 98124 USA
[2] York Univ, Dept Comp Sci, N York, ON M3J 1P3, Canada
关键词
Dulmage-Mendelsohn decomposition; network flow; graph bisection; ordering algorithms; nested dissection; multisection;
D O I
10.1137/S0895479896308433
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the use of the Dulmage-Mendelsohn decomposition and network ow on bipartite graphs to improve a graph bisection partition. Given a graph partition [S, B, W] with a vertex separator S and two disconnected components B and W, different strategies are considered based on the Dulmage-Mendelsohn decomposition to reduce the separator size \S\ and/or the imbalance between B and W. For the case when the vertices are weighted, we relate this to the bipartite network ow problem. A further enhancement to improve a partition is to generalize the bipartite network to a general network and then solve a max-ow problem. We demonstrate the utility of these improvement techniques on a set of sparse test matrices, where we find top-level separators, nested dissection, and multisection orderings.
引用
收藏
页码:325 / 354
页数:30
相关论文
共 29 条
  • [1] COMPRESSED GRAPHS AND THE MINIMUM DEGREE ALGORITHM
    ASHCRAFT, C
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1995, 16 (06) : 1404 - 1411
  • [2] Using domain decomposition to find graph bisectors
    Ashcraft, C
    Liu, JWH
    [J]. BIT, 1997, 37 (03): : 506 - 534
  • [3] ASHCRAFT C, 1994, SIAM PROC S, P130
  • [4] ASHCRAFT C, IN PRESS SIAM J MATR
  • [5] BUI TN, 1993, PROCEEDINGS OF THE SIXTH SIAM CONFERENCE ON PARALLEL PROCESSING FOR SCIENTIFIC COMPUTING, VOLS 1 AND 2, P445
  • [6] DAMHAUG AC, 1992, THESIS NORWEGIAN I T
  • [7] SPARSE-MATRIX TEST PROBLEMS
    DUFF, IS
    GRIMES, RG
    LEWIS, JG
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1989, 15 (01): : 1 - 14
  • [8] Dulmage A, 1958, CAN J MATH, V10, P517, DOI DOI 10.4153/CJM-1958-052-0
  • [9] THEORETICAL IMPROVEMENTS IN ALGORITHMIC EFFICIENCY FOR NETWORK FLOW PROBLEMS
    EDMONDS, J
    KARP, RM
    [J]. JOURNAL OF THE ACM, 1972, 19 (02) : 248 - &
  • [10] EISENSTAT S, 1996, COMMUNICATION