Ethylene and fruit ripening

被引:451
作者
Barry, Cornelius S.
Giovannoni, James J.
机构
[1] Cornell Univ, Boyce Thompson Inst Plant Res, Ithaca, NY 14853 USA
[2] Cornell Univ, USDA ARS, US Plant Soil & Nutr Lab, Tower Rd, Ithaca, NY 14853 USA
关键词
ethylene; fruit; tomato; ripening; climacteric; signal transduction;
D O I
10.1007/s00344-007-9002-y
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The ripening of fleshy fruits represents the unique coordination of developmental and biochemical pathways leading to changes in color, texture, aroma, and nutritional quality of mature seed-bearing plant organs. The gaseous plant hormone ethylene plays a key regulatory role in ripening of many fruits, including some representing important contributors of nutrition and fiber to the diets of humans. Examples include banana, apple, pear, most stone fruits, melons, squash, and tomato. Molecular exploration of the role of ethylene in fruit ripening has led to the affirmation that mechanisms of ethylene perception and response defined in the model system Arabidopsis thaliana are largely conserved in fruit crop species, although sometimes with modifications in gene family size and regulation. Positional cloning of genes defined by ripening defect mutations in the model fruit system tomato have recently led to the identification of both novel components of ethylene signal transduction and unique transcription factor functions influencing ripening-related ethylene production. Here we summarize recent developments in the regulation of fruit ripening with an emphasis on the regulation of ethylene synthesis, perception, and response.
引用
收藏
页码:143 / 159
页数:17
相关论文
共 135 条
[1]   Signal transduction systems regulating fruit ripening [J].
Adams-Phillips, L ;
Barry, C ;
Giovannoni, J .
TRENDS IN PLANT SCIENCE, 2004, 9 (07) :331-338
[2]   Evidence that CTR1-mediated ethylene signal transduction in tomato is encoded by a multigene family whose members display distinct regulatory features [J].
Adams-Phillips, L ;
Barry, C ;
Kannan, P ;
Leclercq, J ;
Bouzayen, M ;
Giovannoni, J .
PLANT MOLECULAR BIOLOGY, 2004, 54 (03) :387-404
[3]   Novel insight into vascular, stress, and auxin-dependent and -independent gene expression programs in strawberry, a non-climacteric fruit [J].
Aharoni, A ;
Keizer, LCP ;
Van den Broeck, HC ;
Blanco-Portales, R ;
Muñoz-Blanco, J ;
Bois, G ;
Smit, P ;
De Vos, RCH ;
O'Connell, AP .
PLANT PHYSIOLOGY, 2002, 129 (03) :1019-1031
[4]   Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development [J].
Alba, R ;
Payton, P ;
Fei, ZJ ;
McQuinn, R ;
Debbie, P ;
Martin, GB ;
Tanksley, SD ;
Giovannoni, JJ .
PLANT CELL, 2005, 17 (11) :2954-2965
[5]   EVIDENCE FOR THE INVOLVEMENT OF ETHYLENE IN THE EXPRESSION OF SPECIFIC RNAS DURING MATURATION OF THE ORANGE, A NONCLIMACTERIC FRUIT [J].
ALONSO, JM ;
CHAMARRO, J ;
GRANELL, A .
PLANT MOLECULAR BIOLOGY, 1995, 29 (02) :385-390
[6]  
[Anonymous], 1998, Plant Physiology
[7]   Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe melon fruits [J].
Ayub, R ;
Guis, M ;
BenAmor, M ;
Gillot, L ;
Roustan, JP ;
Latche, A ;
Bouzayen, M ;
Pech, JC .
NATURE BIOTECHNOLOGY, 1996, 14 (07) :862-866
[8]   Ripening in the tomato Green-ripe mutant is inhibited by ectopic expression of a protein that disrupts ethylene signaling [J].
Barry, Cornelius S. ;
Giovannoni, James J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (20) :7923-7928
[9]   Ethylene insensitivity conferred by the Green-ripe and Never-ripe 2 ripening mutants of tomato [J].
Barry, CS ;
McQuinn, RP ;
Thompson, AJ ;
Seymour, GB ;
Grierson, D ;
Giovannoni, JJ .
PLANT PHYSIOLOGY, 2005, 138 (01) :267-275
[10]   Differential expression of the 1-aminocyclopropane-1-carboxylate oxidase gene family of tomato [J].
Barry, CS ;
Blume, B ;
Bouzayen, M ;
Cooper, W ;
Hamilton, AJ ;
Grierson, D .
PLANT JOURNAL, 1996, 9 (04) :525-535