The complete sequence of the virulence plasmid pMT1 of Yersinia pestis KIM5 revealed a region homologous to the plasmid partition (par) region of the P7 plasmid prophage of Escherichia coli. The essential genes parA and parB and the downstream partition site gene, parS, are highly conserved in sequence and organization. The pMT1parS site and the parA-parB operon were separately inserted into vectors that could be maintained in E. coli. A mini-P1 vector containing pMT1parS was stably maintained when the pMT1 ParA and ParB proteins were supplied in trans, showing that the pMT1par system is fully functional for plasmid partition in E. coli. The pMT1par system exerted a plasmid silencing activity similar to, but weaker than those of P7par and P1par. In spite of the high degree of similarity, especially to P7par, it showed unique specificities with respect to the interactions of key components. Neither the P7 nor P1 Par proteins could support partition via the pMT1parS site, and the pMT1 Par proteins failed to support partition with P1parS or P7parS. Typical of other partition sites. supernumerary copies of pMT1parS exerted incompatibility toward plasmids supported by pMT1par. However, no interspecies incompatibility effect was observed between pMT1par, P7par, and P1par.