A plasmid partition system of the P1-P7par family from the pMT1 virulence plasmid of Yersinia pestis

被引:21
作者
Youngren, B
Radnedge, L
Hu, P
Garcia, E
Austin, S [1 ]
机构
[1] NCI, Gene Regulat & Chromosome Biol Lab, DBS, NCI FCRDC, Frederick, MD 21702 USA
[2] Univ Calif Lawrence Livermore Natl Lab, Biol & Biotechnol Res Program, Livermore, CA 94551 USA
关键词
D O I
10.1128/JB.182.14.3924-3928.2000
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The complete sequence of the virulence plasmid pMT1 of Yersinia pestis KIM5 revealed a region homologous to the plasmid partition (par) region of the P7 plasmid prophage of Escherichia coli. The essential genes parA and parB and the downstream partition site gene, parS, are highly conserved in sequence and organization. The pMT1parS site and the parA-parB operon were separately inserted into vectors that could be maintained in E. coli. A mini-P1 vector containing pMT1parS was stably maintained when the pMT1 ParA and ParB proteins were supplied in trans, showing that the pMT1par system is fully functional for plasmid partition in E. coli. The pMT1par system exerted a plasmid silencing activity similar to, but weaker than those of P7par and P1par. In spite of the high degree of similarity, especially to P7par, it showed unique specificities with respect to the interactions of key components. Neither the P7 nor P1 Par proteins could support partition via the pMT1parS site, and the pMT1 Par proteins failed to support partition with P1parS or P7parS. Typical of other partition sites. supernumerary copies of pMT1parS exerted incompatibility toward plasmids supported by pMT1par. However, no interspecies incompatibility effect was observed between pMT1par, P7par, and P1par.
引用
收藏
页码:3924 / 3928
页数:5
相关论文
共 31 条
[1]   PARTITION-MEDIATED INCOMPATIBILITY OF BACTERIAL PLASMIDS [J].
AUSTIN, S ;
NORDSTROM, K .
CELL, 1990, 60 (03) :351-354
[2]   CONSTRUCTION AND CHARACTERIZATION OF NEW CLONING VEHICLES .2. MULTIPURPOSE CLONING SYSTEM [J].
BOLIVAR, F ;
RODRIGUEZ, RL ;
GREENE, PJ ;
BETLACH, MC ;
HEYNEKER, HL ;
BOYER, HW ;
CROSA, JH ;
FALKOW, S .
GENE, 1977, 2 (02) :95-113
[3]   P1 ParA interacts with the P1 partition complex at parS and an ATP-ADP switch controls ParA activities [J].
Bouet, JY ;
Funnell, BE .
EMBO JOURNAL, 1999, 18 (05) :1415-1424
[4]   CONSTRUCTION AND CHARACTERIZATION OF AMPLIFIABLE MULTICOPY DNA CLONING VEHICLES DERIVED FROM P15A CRYPTIC MINIPLASMID [J].
CHANG, ACY ;
COHEN, SN .
JOURNAL OF BACTERIOLOGY, 1978, 134 (03) :1141-1156
[5]   A PSC101-DERIVED PLASMID WHICH SHOWS NO SEQUENCE HOMOLOGY TO OTHER COMMONLY USED CLONING VECTORS [J].
CHURCHWARD, G ;
BELIN, D ;
NAGAMINE, Y .
GENE, 1984, 31 (1-3) :165-171
[6]   BIOCHEMICAL ACTIVITIES OF THE PARA PARTITION PROTEIN OF THE P1 PLASMID [J].
DAVIS, MA ;
MARTIN, KA ;
AUSTIN, SJ .
MOLECULAR MICROBIOLOGY, 1992, 6 (09) :1141-1147
[7]   RECOGNITION OF THE P1 PLASMID CENTROMERE ANALOG INVOLVES BINDING OF THE PARB PROTEIN AND IS MODIFIED BY A SPECIFIC HOST FACTOR [J].
DAVIS, MA ;
AUSTIN, SJ .
EMBO JOURNAL, 1988, 7 (06) :1881-1888
[8]   PLASMIDS IN YERSINIA-PESTIS [J].
FERBER, DM ;
BRUBAKER, RR .
INFECTION AND IMMUNITY, 1981, 31 (02) :839-841
[9]  
FUNNELL BE, 1993, J BIOL CHEM, V268, P3616