Visible light and Fe(III)-mediated degradation of Acid Orange 7 in the absence of H2O2

被引:207
作者
Park, H [1 ]
Choi, W [1 ]
机构
[1] Pohang Univ Sci & Technol, Sch Environm Sci & Engn, Pohang 790784, South Korea
关键词
AO7; dye; ferric ions; visible light; photolysis; water treatment;
D O I
10.1016/S1010-6030(03)00141-2
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The photodegradation of Acid Orange 7 (AO7) was successfully achieved in the presence of Fe(III) ions only under visible light (lambda greater than or equal to 420 nm). Upon adding Fe(III) to AO7 solution, ferric ions formed complexes with AO7 mainly through the azo chromophoric group. This AO7-Fe(III) complex formation was highly pH-sensitive and maximized around pH 3.7. The visible light-induced degradation of AO7 was effective only when the complex formation was favored. The AO7 photodegradation accompanied the production of ferrous (Fe2+) ions and was not inhibited in the presence of excess OH radical scavenger (2-propanol), which indicated that OH radicals were not responsible for the dye degradation. The proposed mechanism of the dye degradation is the visible light-induced electron transfer from the azo chromophoric group to the iron center in the complex. Therefore, when the formation of AO7-Fe(III) complex was inhibited in the presence of excess interfering anions such as sulfites and sulfates, the photodegradation of the dye was also prevented. The photodegradation of AO7 under visible light produced o-phthalate and 4-hydroxybenzenesulfonate (4-HBS) as major products but did not reduce the total organic carbon (TOC) concentration. Since this process does not require the addition of hydrogen peroxide, it might be developed into an economically viable method to pretreat or decolorize azo-dye wastewaters using sunlight. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:241 / 247
页数:7
相关论文
共 26 条
[1]   Degradation of dibutyl phthalate by homogeneous photocatalysis with Fe(III) in aqueous solution [J].
Bajt, O ;
Mailhot, G ;
Bolte, M .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2001, 33 (03) :239-248
[2]   Degradation/decoloration of concentrated solutions of Orange II. Kinetics and quantum yield for sunlight induced reactions via Fenton type reagents [J].
Bandara, J ;
Morrison, C ;
Kiwi, J ;
Pulgarin, C ;
Peringer, P .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 1996, 99 (01) :57-66
[3]   Investigation of the interaction between a sulfonated azo dye (AO7) and a TiO2 surface [J].
Bauer, C ;
Jacques, P ;
Kalt, A .
CHEMICAL PHYSICS LETTERS, 1999, 307 (5-6) :397-406
[4]   Photooxidation of an azo dye induced by visible light incident on the surface of TiO2 [J].
Bauer, C ;
Jacques, P ;
Kalt, A .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2001, 140 (01) :87-92
[5]   TRANSFORMATION OF DYES AND RELATED-COMPOUNDS IN ANOXIC SEDIMENT - KINETICS AND PRODUCTS [J].
BAUGHMAN, GL ;
WEBER, EJ .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1994, 28 (02) :267-276
[6]   PHOTODECOMPOSITION OF IRON(III) HYDROXO AND SULFATO COMPLEXES IN AQUEOUS-SOLUTION - WAVELENGTH DEPENDENCE OF OH AND SO4- QUANTUM YIELDS [J].
BENKELBERG, HJ ;
WARNECK, P .
JOURNAL OF PHYSICAL CHEMISTRY, 1995, 99 (14) :5214-5221
[7]   Degradation photoinduced by Fe(III): Method of alkylphenol ethoxylates removal in water [J].
Brand, N ;
Mailhot, G ;
Bolte, M .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1998, 32 (18) :2715-2720
[8]   CRITICAL-REVIEW OF RATE CONSTANTS FOR REACTIONS OF HYDRATED ELECTRONS, HYDROGEN-ATOMS AND HYDROXYL RADICALS (.OH/.O-) IN AQUEOUS-SOLUTION [J].
BUXTON, GV ;
GREENSTOCK, CL ;
HELMAN, WP ;
ROSS, AB .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 1988, 17 (02) :513-886
[9]  
Calvert J.G., 1966, Photochemistry
[10]   Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2 [J].
Cho, YM ;
Choi, WY ;
Lee, CH ;
Hyeon, T ;
Lee, HI .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2001, 35 (05) :966-970