Characterization of a family 45 glycosyl hydrolase from Fibrobacter succinogenes S85

被引:2
作者
Park, Jae Seon
Russell, James B.
Wilson, David B.
机构
[1] Cornell Univ, Dept Microbiol, Ithaca, NY 14853 USA
[2] USDA ARS, Ithaca, NY 14853 USA
[3] Cornell Univ, Dept Biochem Mol & Cell Biol, Ithaca, NY 14853 USA
关键词
fibrobacter succinogenes; cellulase; rumen; glycosyl hydrolase;
D O I
暂无
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Fibrobacter succinogenes is one of the most active cellulolytic bacteria ever isolated from the rumen, but enzymes from F succinogenes capable of hydrolyzing native (insoluble) cellulose at a rapid, rate have not! been identified. However, the genome sequence of F succinogenes is now available, and it was hoped that this information would yield new insights into the mechanism of cellulose digestion. The genome has a single family 45 beta-glucanase gene, and some of the enzymes in this family have good activity against native cellulose. The gene encoding the family 45 glycosyl hydrolase from F succinogenes S85 w as cloned into Escherichia coli JM109(DE3) using pMAL-c2 as a vector. Recombinant E. coli cells produced a soluble fusion protein (MAL-F45) that was purified on a maltose affinity column and characterized. MAL-F45 was most active on carboxymethylcellulose between pH 6 and 7 and it hydrolyzed cellopentaose and cellohexaose but not cellotetraose. It also cleaved p-nitrophenyl-cellopentose into cellotriose and p-nitrophenyl-cellobiose. MAL-F45 produced cellobiose, cellotriose and cellotetraose from acid swollen cellulose and bacteria cellulose, but the rate of this hydrolysis was much too low to explain the rate of cellulose digestion by growing cultures. Because the F succinogenes S85 genome lacks dockerin and cohesin sequences, does not encode any known processive cellulases, and most of its endoglucanase genes do not encode carbohydrate binding modules, it appears that F. succinogenes has a novel mechanism of cellulose degradation. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:83 / 88
页数:6
相关论文
共 30 条
[1]   Phenotypic diversity among ruminal isolates of Prevotella ruminicola: Proposal of Prevotella brevis sp nov, Prevotella bryantii sp nov, and Prevotella albensis sp nov and redefinition of Prevotella ruminicola [J].
Avgustin, G ;
Wallace, RJ ;
Flint, HJ .
INTERNATIONAL JOURNAL OF SYSTEMATIC BACTERIOLOGY, 1997, 47 (02) :284-288
[2]   The cellulosomes: Multienzyme machines for degradation of plant cell wall polysaccharides [J].
Bayer, EA ;
Belaich, JP ;
Shoham, Y ;
Lamed, R .
ANNUAL REVIEW OF MICROBIOLOGY, 2004, 58 :521-554
[3]   Fiber-degrading systems of different strains of the genus Fibrobacter [J].
Béra-Maillet, C ;
Ribot, Y ;
Forano, E .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2004, 70 (04) :2172-2179
[4]   OBSERVATIONS ON THE NUTRITION OF BACTEROIDES-SUCCINOGENES - A RUMINAL CELLULOLYTIC BACTERIUM [J].
BRYANT, MP ;
ROBINSON, IM ;
CHU, H .
JOURNAL OF DAIRY SCIENCE, 1959, 42 (11) :1831-1847
[5]   MEDIUM WITHOUT RUMEN FLUID FOR NONSELECTIVE ENUMERATION AND ISOLATION OF RUMEN BACTERIA [J].
CALDWELL, DR ;
BRYANT, MP .
APPLIED MICROBIOLOGY, 1966, 14 (05) :794-&
[6]  
Chesson A., 1997, RUMEN MICROBIAL ECOS, P329, DOI DOI 10.1007/978-94-009-1453-7_8
[7]   Structures of oligosaccharide-bound forms of the endoglucanase V from Humicola insolens at 1.9 angstrom resolution [J].
Davies, GJ ;
Tolley, SP ;
Henrissat, B ;
Hjort, C ;
Schulein, M .
BIOCHEMISTRY, 1995, 34 (49) :16210-16220
[8]   Model cellulose films exposed to H-insolens glucoside hydrolase family 45 endo-cellulase -: the effect of the carbohydrate-binding module [J].
Eriksson, J ;
Malmsten, M ;
Tiberg, F ;
Callisen, TH ;
Damhus, T ;
Johansen, KS .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2005, 285 (01) :94-99
[9]  
Fields MW, 1998, FEMS MICROBIOL ECOL, V27, P261, DOI 10.1111/j.1574-6941.1998.tb00542.x
[10]   MEASUREMENT OF CELLULASE ACTIVITIES [J].
GHOSE, TK .
PURE AND APPLIED CHEMISTRY, 1987, 59 (02) :257-268