High density experiments with gas puffing and ECRH in T-10

被引:28
作者
Esipchuk, YV [1 ]
Kirneva, NA
Borschegovskij, AA
Chistyakov, VV
Denisov, P
Dremin, MM
Gorbunov, EP
Grashin, SA
Kalupin, DV
Khimchenko, LN
Khramenkov, AV
Kirnev, GS
Krilov, SV
Krupin, VA
Myalton, TB
Pavlov, Y
Piterskij, VV
Ploskirev, N
Poznyak, VI
Roy, IN
Shelukhin, DA
Skosyrev, YV
Trukhin, M
Trukhina, EV
Vershkov, VA
Veschev, EA
Volkov, V
Zhuravlev, VA
机构
[1] RRC Kurchatov Inst, Nucl Fus Inst, Moscow 123182, Russia
[2] EURATOM, Inst Plasmaphys, Forschungszentrum Julich, D-52425 Julich, Germany
关键词
D O I
10.1088/0741-3335/45/5/320
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
High density experiments were carried out in T-10 with gas puffing and electron cyclotron resonance heating (with absorbed power value up to 1.4 MW) with oblique and perpendicular power launch. Densities exceeding the Greenwald limit (n(Gw)) by up to a factor of 1.8 were achieved in a regime with a high value of the edge safety factor at the current flat-top, q (a) congruent to 8.2. The decrease of q (a) to a value of 3 led to the reduction of the ratio (n(e))lim/n(Gw) to 1. Confinement degradation with density increase was not significant up to the density limit. However, the typical T-10 linear increase of energy confinement time with density saturates at n(e) greater than or equal to 0.6n(Gw). This saturation is the result of the development of an additional transport in the electron heat channel. However, the saturated tau(E) values exceeded the ITER L-mode scaling predictions by up to a factor of 1.2 and were close to the value predicted by the ITER H-mode scaling. Effect of the strong gas puffing on the plasma confinement and experiments with neon seeding are also discussed in this paper.
引用
收藏
页码:793 / 806
页数:14
相关论文
共 17 条
[1]   Investigation of the possibility of exceeding the Greenwald density limit during ECRH in T-10 [J].
Alikaev, VV ;
Borshchegovskii, AA ;
Volkov, VV ;
Dremin, MM ;
Esipchuk, YV ;
Kakurin, AM ;
Kirneva, NA ;
Kislov, AY ;
Kislov, DA ;
Klimanov, IV ;
Kochin, VA ;
Krupin, VA ;
Krylov, SV ;
Myalton, TB ;
Novikov, AY ;
Notkin, GE ;
Pavlov, YD ;
Piterskii, VV ;
Poznyak, VI ;
Roi, IN ;
Savrukhin, PV ;
Stepanénko, MM ;
Sushkov, AV ;
Trukhin, VM ;
Trukhina, EV ;
Chistyakov, VV .
PLASMA PHYSICS REPORTS, 2000, 26 (12) :991-999
[2]  
ALIKAEV VV, 1990, P 17 EPS C PLASM B 3, V14, P1080
[3]  
Dnestrovskii YN, 1997, PLASMA PHYS REP, V23, P566
[4]  
Esipchuk Yu. V., 1991, Journal of the Moscow Physical Society, V1, P119
[5]  
Galeev A.A., 1979, REV PLASMA PHYS, V7, P257
[6]   TURBULENCE AND ENERGY CONFINEMENT IN TORE SUPRA OHMIC DISCHARGES [J].
GARBET, X ;
PAYAN, J ;
LAVIRON, C ;
DEVYNCK, P ;
SAHA, SK ;
CAPES, H ;
CHEN, XP ;
COULON, JP ;
GIL, C ;
HARRIS, GR ;
HUTTER, T ;
PECQUET, AL ;
TRUC, A ;
HENNEQUIN, P ;
GERVAIS, F ;
QUEMENEUR, A .
NUCLEAR FUSION, 1992, 32 (12) :2147-2155
[7]  
GUSDAR PN, 1993, PHYS FLUIDS B-PLASMA, V5, P3712
[8]   THEORY OF PLASMA TRANSPORT IN TOROIDAL CONFINEMENT SYSTEMS [J].
HINTON, FL ;
HAZELTINE, RD .
REVIEWS OF MODERN PHYSICS, 1976, 48 (02) :239-308
[9]   TRAPPED PARTICLES IN TOROIDAL MAGNETIC SYSTEMS [J].
KADOMTSEV, BB ;
POGUTSE, OP .
NUCLEAR FUSION, 1971, 11 (01) :67-+
[10]  
LEONOV VM, 2002, ITPA M CONF DAT MOD