Generalized Schrodinger equation in Euclidean field theory

被引:9
作者
Conrady, F
Rovelli, C
机构
[1] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[2] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany
[3] CNRS, Ctr Phys Theor, F-13288 Marseille, France
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 2004年 / 19卷 / 24期
关键词
field theory; lattice and discrete methods; covariant and sum-over histories quantization; loop quantum gravity; quantum geometry; spin foams;
D O I
10.1142/S0217751X04019445
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We investigate the idea of a "general boundary" formulation of quantum field theory in the context of the Euclidean free scalar field. We propose a precise definition for an evolution kernel that propagates the field through arbitrary space-time regions. We show that this kernel satisfies an evolution equation which governs its dependence on deformations of the boundary surface and generalizes the ordinary (Euclidean) Schrodinger equation. We also derive the classical counterpart of this equation, which is a Hamilton-Jacobi equation for general boundary surfaces.
引用
收藏
页码:4037 / 4068
页数:32
相关论文
共 17 条
[1]  
[Anonymous], GRQC0110034
[2]  
Atiyah M., 1988, PUBL MATH-PARIS, V68, P175, DOI [10.1007/BF02698547, DOI 10.1007/BF02698547]
[3]  
Baez JC, 2000, LECT NOTES PHYS, V543, P25
[4]  
BARRETT JW, GRQC0010050
[5]  
CONRADY F, GRQC0307118
[6]   SPACE-TIME APPROACH TO NON-RELATIVISTIC QUANTUM MECHANICS [J].
FEYNMAN, RP .
REVIEWS OF MODERN PHYSICS, 1948, 20 (02) :367-387
[7]   WAVE-FUNCTIONS CONSTRUCTED FROM AN INVARIANT SUM OVER HISTORIES SATISFY CONSTRAINTS [J].
HALLIWELL, JJ ;
HARTLE, JB .
PHYSICAL REVIEW D, 1991, 43 (04) :1170-1194
[8]   The stress-energy operator [J].
Helfer, AD .
CLASSICAL AND QUANTUM GRAVITY, 1996, 13 (11) :L129-L134
[9]  
OECKI R, IN PRESS CLASS QUANT
[10]  
OECKL R, IN PRESS PHYS LETT B