Regulation of a transient receptor potential (TRP) channel by tyrosine phosphorylation - Src family kinase-dependent tyrosine phosphorylation of TRPV4 on Tyr-253 mediates its response to hypotonic stress

被引:145
作者
Xu, HS
Zhao, HY
Tian, W
Yoshida, K
Roullet, JB
Cohen, DM
机构
[1] Oregon Hlth & Sci Univ, Dept Med, Div Nephrol, Portland, OR 97201 USA
[2] Oregon Hlth & Sci Univ, Dept Cell & Dev Biol, Portland, OR 97201 USA
[3] Vet Affairs Med Ctr, Portland, OR 97201 USA
[4] Harvard Univ, Sch Med, Dana Farber Canc Inst, Boston, MA 02115 USA
关键词
D O I
10.1074/jbc.M211061200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The recently identified transient receptor potential (TRP) channel family member, TRPV4 (formerly known as OTRPC4, VR-OAC, TRP12, and VRL-2) is activated by hypotonicity. It is highly expressed in the kidney as well as blood-brain barrier-deficient hypothalamic nuclei responsible for systemic osmosensing. Apart from its gating by hypotonicity, little is known about TRPV4 regulation. We observed that hypotonic stress resulted in rapid tyrosine phosphorylation of TRPV4 in a heterologous expression model and in native murine distal convoluted tubule cells in culture. This tyrosine phosphorylation was sensitive to the inhibitor of Src family tyrosine kinases, PP1, in a dose-dependent fashion. TRPV4 associated with Src family kinases by co-immunoprecipitation studies and confocal immunofluorescence microscopy, and this interaction required an intact Src family kinase SH2 domain. One of these kinases, Lyn, was activated by hypotonic stress and phosphorylated TRPV4 in an immune complex kinase assay and an in vitro kinase assay using recombinant Lyn and TRPV4. Transfection of wild-type Lyn dramatically potentiated hypotonicity-dependent TRPV4 tyrosine phosphorylation whereas dominant negative-acting Lyn modestly inhibited it. Through mutagenesis studies, the site of tonicity-dependent tyrosine phosphorylation was mapped to Tyr-253, which is conserved across all species from which TRPV4 has been cloned. Importantly, point mutation of Tyr-253 abolished hypotonicity-dependent channel activity. In aggregate, these data indicate that hypotonic stress results in Src family tyrosine kinase-dependent tyrosine phosphorylation of the tonicity sensor TRPV4 at residue Tyr-253 and that this residue is essential for channel function in this context. This is the first example of direct regulation of TRP channel function through tyrosine phosphorylation.
引用
收藏
页码:11520 / 11527
页数:8
相关论文
共 41 条
  • [1] Sequence and structure-based prediction of eukaryotic protein phosphorylation sites
    Blom, N
    Gammeltoft, S
    Brunak, S
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 1999, 294 (05) : 1351 - 1362
  • [2] Oncogenic kinase signalling
    Blume-Jensen, P
    Hunter, T
    [J]. NATURE, 2001, 411 (6835) : 355 - 365
  • [3] BUCHER P, 1994, ISMB, V2, P53
  • [4] Chin H, 1998, BLOOD, V91, P3734
  • [5] COHEN DM, 1994, J BIOL CHEM, V269, P25865
  • [6] Colbert HA, 1997, J NEUROSCI, V17, P8259
  • [7] COOPER JA, 1984, J BIOL CHEM, V259, P7835
  • [8] Crépel V, 1998, J NEUROSCI, V18, P1196
  • [9] Tyrosine phosphorylation modulates the osmosensitivity of volume-dependent taurine efflux from glial cells in the rat supraoptic nucleus
    Deleuze, C
    Duvoid, A
    Moos, FC
    Hussy, N
    [J]. JOURNAL OF PHYSIOLOGY-LONDON, 2000, 523 (02): : 291 - 299
  • [10] Regulation of the bovine kidney microsomal chloride channel p64 by p59fyn, a Src family tyrosine kinase
    Edwards, JC
    Kapadia, S
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (41) : 31826 - 31832