A simple analysis of some a posteriori error estimates

被引:12
作者
Bank, RE [1 ]
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
finite element methods; adaptive mesh refinement; a posteriori error estimates; hierarchical basis;
D O I
10.1016/S0168-9274(97)00081-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze two popular classes of a posteriori error estimates within the abstract framework established by Babuska and Aziz (1972). Within this framework, we find that bounds for the a posteriori error estimates depend on several of the same constants as a priori error estimates, notably the famous inf-sup constant. We apply our general theory to some specific finite element approximations for the Poisson equation and Stokes equations. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:153 / 164
页数:12
相关论文
共 26 条
[1]   A PROCEDURE FOR A POSTERIORI ERROR ESTIMATION FOR H-P FINITE-ELEMENT METHODS [J].
AINSWORTH, M ;
ODEN, JT .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1992, 101 (1-3) :73-96
[2]   A UNIFIED APPROACH TO A POSTERIORI ERROR ESTIMATION USING ELEMENT RESIDUAL METHODS [J].
AINSWORTH, M ;
ODEN, JT .
NUMERISCHE MATHEMATIK, 1993, 65 (01) :23-50
[3]  
[Anonymous], CNA159 U TEX AUST
[4]  
Arnold D., 1984, CALCOLO, V21, P337, DOI 10.1007/bf02576171
[5]  
AZIZ A, 1972, MATH FDN FINITE ELEM, P1
[6]   ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :736-754
[7]   A-POSTERIORI ERROR ESTIMATES FOR FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
RHEINBOLDT, WC .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1978, 12 (10) :1597-1615
[8]  
BABUSKA I, 1985, BASIC PRINCIPLES FEE
[9]  
BABUSKA I, 1986, ACCURACY ESTIMATES A
[10]  
Bank R., 1996, ACTA NUMERICA 1996, P1